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Abstract

It was conjectured recently that the string worldsheet theory for the fast moving string in AdS times
a sphere becomes effectively first order in the time derivative and describes the continuous limit of an
integrable spin chain. In this paper we will try to make this statement more precise. We interpret the
first order theory as describing the long term evolution of the tensionless string perturbed by a small
tension. The long term evolution is a Hamiltonian flow on the moduli space of periodic trajectories.
It should correspond to the renormgroup flow on the field theory side.
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1. Introduction

The AdS/CFT correspondence relates weakly coupling limit of the Type IIB string the-
ory to the strongly coupled limit of theN = 4 Yang–Mills theory. It is hard to imagine that
this type of a correspondence would allow for quantitative checks besides the comparison
of the quantities protected by the supersymmetry. But the recent research revealed several
examples where some nontrivial parts of the Yang–Mills perturbation theory are reproduced
from the string theory computations. The first work in this direction was the computation
of the expectation value of the circular Wilson loop[1,2]. It was followed by the discovery
of the BMN limit [3–5] and the “spinning string” solutions which we will discuss in this
paper. In these computations supersymmetry alone is not enough to guarantee the agree-
ment of the results of the string theory and the field theory. It turns out that in some field
theory computations the perturbation series depend on the coupling constantλ only in the
combinationλ/J2 whereJ is a large integer. IfJ2 � λ the perturbative computations can
presumably be trusted even whenλ is large, and whenλ is large they can be matched with
the string theory computations. At the moment there is no solid explanation of why it works,
and even whether this is true to all orders of the Yang–Mills perturbation theory (see[6] for
one of the most recent discussions.) But there are several computations with the impressive
agreement between the field theory and the string theory.

The “spinning string” solutions were first considered in the context of the AdS/CFT
correspondence in[7–9]. Various computations in the classical dynamics of these solutions
lead to the series in the small parameter which on the field theory side is identified with
λ/J2. It was conjectured that the Yang–Mills perturbation theory in the corresponding sector
is reproduced by the classical dynamics of the spinning strings. The corresponding Yang–
Mills operators are the traces of the products of the large number of the elementary fields
of the Yang–Mills theory;J corresponds roughly speaking to the number of the elementary
fields under the trace. The one-loop anomalous dimension of such operators was computed
in [10,11]and the perfect agreement was found with the classical string computations; see
the recent review[12] for the details. It turns out that the single trace operators in theN = 4
Yang–Mills theory can be thought of as quantum states of the spin chain, and the one loop
anomalous dimension corresponds to the integrable Hamiltonian.

A direct correspondence between the quasiclassical states of the spin chain and the
classical string solutions was proposed recently in[13]. It was suggested that in the high
energy limit the string worldsheet theory becomes effectively first order in the time derivative
and agrees with the Hamiltonian evolution in the spin chain. In our paper we will try to
generalize this statement and make it more precise.

The characteristic property of the spinning strings, which was first clearly explained
in [14], is that their worldsheets are nearly-degenerate. In all the known situations when
there is an agreement with the field theory perturbative computation, every point of the
string is moving very fast, approaching the speed of light. Therefore “spinning strings”
are actually fast moving strings.1 This observation suggests that there is a correspondence
between a certain class of the Yang–Mills operators and the parameterized null surfaces

1 Fast moving strings were also considered in this context in[15].
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in AdS5 × S5 [16]. A null surface is a surface with degenerate metric, ruled by the light
rays. A parameterized null surface is a null surfaceΣ with a functionσ : Σ → S1 which is
constant on the light rays. (On the field theory sideσ can be thought of as parameterizing
“the position of the elementary field operator inside the trace”.) A parameterized null surface
can be specified by the embedding functionsx(σ, τ) with values inAdS5 × S5 such that for
a fixedσ = σ0 the functionsx(σ0, τ) describe a light ray with the affine parameterτ, and
(∂σx, ∂τx) = 0. The embedding functions are defined modulo the “gauge transformations”
with the infinitesimal formδx = φ(σ)∂τx whereφ(σ) is an arbitrary periodic function ofσ.

There is an interesting special case when the null surface is generated by the orbits of
the lightlike Killing vector fieldV in AdS5 × S5. The corresponding field theory operators
are characterized by a special property that their engineering dimension is equal to a certain
combination of conserved charges. In this special case the one loop anomalous dimension
should be equal on the string theory side to the value of the conserved charge correspond-
ing toV. We have shown in[16] that this charge is proportional to the following “action
functional”:

S[x] =
∫
S1

dσ(∂σx(σ, τ), ∂σx(σ, τ)) (1)

with the coefficient of the orderλ/J2. (This formula requires a choice of the closed contour
on the null surface, but the result of the integration does not actually depend on this choice.)
The definition of the special class of operators for which the engineering dimension equals
a combination of charges makes sense for finiteλ/J2. What is special about the extremal
surfaces corresponding to this particular class of operators for finiteλ/J2? We describe this
class of extremal surfaces inSection 2to the first order inλ/J2.

We will also generalize the expression (1) for the anomalous dimension for the case
whenΣ is a general null-surface, not necessarily ruled by the orbits of the symmetry. (The
solutions of[17] belong to this more general class.) Following the idea of[13] we will study
the long term evolution of the approximating nearly-degenerate extremal surfaceΣ(ε), ε2 =
λ/J2,Σ(0) = Σ. We show that this long-term evolution is a Hamiltonian flow on the moduli
space of the null-surfaces. The generating function corresponds to the anomalous dimen-
sion of the corresponding Yang–Mills operator. The result is a very natural generalization
of (1):

S[x] =
∫ 2π

0
dτ

∫ 2π

0
dσ(∂σx(σ, τ), ∂σx(σ, τ)) (2)

This is a functional on the space of null-surfaces. For its definition it is essential that
all the light-like geodesics inAdSm × Sn are periodic. Therefore the null-surfaces are
also periodic, just like solutions of the massless field equations. The integration overτ

corresponds to taking the average over the period, seeSection 3for details. The value of
Son the contour should correspond on the field theory side to the anomalous dimension of
the corresponding operator.

The structure of the paper. In Section 2we will study the perturbations of the null
surfaces corresponding to the special class of operators for which the engineering dimension
is equal to a certain combination of theR-charges. On the AdS side this is reflected in the
null-surfaceΣ(0) being invariant under the symmetry generated by the null Killing vector
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V. There are restrictions on the nearly-degenerate worldsheetΣ(ε) following from the fact
that the operators of this class mix only among themselves under the renormgroup. We
show that these restrictions can be satisfied.

In Section 3we will study the perturbations of the null-surfaces which are not generated
by the orbits of the light-like Killing vector. We will describe the “long-term” or “secular”
behavior ofΣ(ε). The moduli space of parameterized null-surfaces is a symplectic manifold,
and the long-term evolution is a Hamiltonian flow corresponding to the renormgroup flow
on the field theory side.

2. Perturbation of the degenerate surfaces ruled by the orbits of the light-like
Killing vector

2.1. Summary of this section

LetV be a lightlike Killing vector field inAdS5 × S5. Consider the null surfaces which
are ruled by the orbits ofV. These null surfaces correspond to the Yang–Mills operators
of the form trF (X, Y,Z) whereF (X, Y,Z) is some (unsymmetrized) product ofX, Y,Z;
X = Φ1 + iΦ2, Y = Φ3 + iΦ4 andZ = Φ5 + iΦ6 are the complex combinations of the
scalar fields. For these operators the charge corresponding toV is zero in the free theory.
LetO be an operator of this type.

What can we say about the extremal surfaceΣO corresponding to such an operatorO? We
will argue that to the first order inε2 = λ/J2 the class of extremal surfaces corresponding
to this special type of operators can be characterized as follows. For each pointx ∈ ΣO
there is a null-surfaceΣ(0) ruled by the orbits ofV and such that in the vicinity ofx the
deviation ofΣO from Σ(0) is of the form:

x(τ, σ) = x0(τ, σ) + ε2η1(τ, σ) + · · · , (3)

whereη1 has the property:

[V, [V, η1]] = 0. (4)

Here [V, η1] = ∇V η1 − ∇η1V denotes the commutator of two vector fields; one of these
fields is defined only on the surfaceΣ(0), therefore the commutator is also defined only
on Σ(0). The property [V, [V, η1]] = 0 is what characterizes this special class of string
worldsheets to the first order inε2.

Unlike the null-surfaceΣ(0), the nearly-degenerate surfaceΣ(ε) is not invariant under
V. But we can describe the variation ofΣ(ε) underV rather explicitly. Indeed, we can see
from (3) that the translation ofx byVwith the infinitesimal parameterµ is:

eµV ·x(τ, σ) = x(τ, σ) + µε2[V, η1](τ, σ), (5)

= (x0(τ, σ) + µε2[V, η1](τ, σ)) + ε2η1(τ, σ). (6)

One can see that when the condition (4) is satisfied,x0 + µε2[V, η1] determines the infinites-
imally deformed null-surface. Therefore the translation of the nearly-degenerate extremal
surfaceΣ(ε) byV corresponds to the deformation of the approximating null-surfaceΣ(0).
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Let us formulate it more precisely. Notice that a light-like Killing vector fieldV in
AdS5 × S5 can always be represented asV = UA + US whereUA andUS are Killing vector
fields onAdS5 andS5 respectively; (UA,UA) = 1 and (US,US) = −1. LetQS denote the
conserved charge corresponding toUS . LetN be the moduli space of parameterized null-
surfaces ruled by the orbits ofV andMJ be the moduli space of extremal surfaces of the
special type characterized byEq. (4) and such thatQS = J .

Let us choose some mapΛ : N→MJ , such that:

1. For any parameterized null-surfaceΣ(0) the imageΛ(Σ(0)) is an extremal surface
deviating fromΣ(0) by the terms of the orderε2 = λ/J2.

2. The density ofQS on Σ(ε) = Λ(Σ(0)) in the limit ε → 0 is proportional to (1/ε) dσ
whereσ is the parameterization of the null-surfaceΣ(0):

Density ofQS =
√
λ

4π

1

ε
dσ + O(1) whenε → 0. (7)

The action ofV onMJ by translations is conjugate byΛ to some one-parameter group of
transformations ofN. It turns out that this one-parameter group of transformations to the
first order inε2 does not depend on the choice ofΛ. It has the following meaning in the dual
field theory. We can identifyNwith the space of continuous operators in the free field theory.
Then the one-parameter group of transformations which we described corresponds to the
renormgroup transformations of the continuous operators when we turn on the interaction
λ/J2. This can be summarized in the commutative diagram:

Σ(0)
RG acting on null-surfaces−−−−−−−−−−−−−−−−→ Σ̃(0)

Λ
||↓ Λ

||↓
Σ(ε)

shift by Killing vector field−−−−−−−−−−−−−−−−→ Σ̃(ε)

(8)

In the rest of this section we will explain how to construct the extremal surfaces satisfying
the conditions (3) and (4).

2.2. General facts about the nearly-degenerate surfaces

Consider the extremal surface inAdS5 × S5 which is nearly-degenerate (close to being
null). Calculations are simplified with a special choice of the worldsheet coordinates:(

∂x

∂τ
,
∂x

∂τ

)
+ ε2

(
∂x

∂σ
,
∂x

∂σ

)
= 0, (9)(

∂x

∂τ
,
∂x

∂σ

)
= 0, (10)

whereε is a small parameter measuring the deviation of the worldsheet from a null-surface.
We assume thatσ is periodic with the period 2π. We choose the small parameterε so that
the embedding functionx(τ, σ) has a finite limit whenε → 0. In this limitx(τ, σ) describes
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an embedding of the null-surfacex0(τ, σ). If we chooseσ as the parameterization of this
limiting null-surface then the density ofQS will agree with this parameterization in the
sense ofEq. (7). The string worldsheet action is:

S =
√
λ

4π

∫
dσ dτ

[
1

ε
(∂τx, ∂τx) − ε(∂σx, ∂σx)

]
. (11)

The string equation of motion is:

1

ε
Dτ∂τx − εDσ∂σx = 0. (12)

We denoteDτ andDσ the worldsheet covariant derivatives. They act on the vector-functions
on the worldsheet with values in the tangent space toAdS5 × S5. The general definition is

Dτξ
µ = ∂τξ

µ + Γµ
νρ∂τx

νξρ,

wherexµ = xµ(τ, σ) are the coordinate functions specifying the embedding of the string
worldsheet into the target space andξµ = ξµ(τ, σ) is a vector-function on the worldsheet
with values in the tangent spaceT (AdS5 × S5). Somewhat schematically, one can write
Dτξ

µ = ∂τx
ν∇νξ

µ where∇ν is the covariant derivative in the tangent bundle to the target
space. More precisely,Dσ is the natural connection in the 10-dimensional vector bundle over
the worldsheet which is the restriction to the worldsheet of the tangent bundle ofAdS5 × S5.
This natural connection is induced from the Levi–Civita connection onT (AdS5 × S5).

One can look for a solution to (12) as a power series inε2:

x(σ, τ) = x0(σ, τ) + ε2η1(σ, τ) + ε4η2(σ, τ) + · · · , (13)

wherex0(σ, τ) is a null-surface. The first deviationη1 satisfies the inhomogeneous Jacobi
equation:

D2η1

∂τ2
+ R

(
∂x0

∂τ
, η1

)
∂x0

∂τ
= D

∂σ

∂x0

∂σ
(14)

and the constraints:

(Dση1, ∂τx0) + (Dτη1, ∂σx0) = 0, (15)

(Dτη1, ∂τx0) = −1
2(∂σx0, ∂σx0), (16)

whereRis the curvature tensor of the target space (we will remind its definition in a moment).
The constraints (15) onη follow from the constraints (9) onx. The inhomogeneous Jacobi
equation2 (14) can be derived from the equations of motion (12) in the following way.

2 The Jacobi equation describes the infinitesimal variation of a geodesic, see for example Appendix 1 of[19]. We
decided to keep this name forEq. (14) which describes the infinitesimal resolution of the null-surface becoming
an extremal surface. Indeed, the null-surface is composed of the null-geodesics. After the resolution, these null-
geodesics become time-like curves. It is not true that these time-like curves are geodesics, because there is a “riving
force”Dσ∂σx on the right hand side of (14). This driving force, resulting from the tension of the string, makes the
equation inhomogeneous.
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Consider the family of worldsheetsΣ(ε) parameterized byρ = ε2. This family of two-
dimensional manifolds “weeps” some three-dimensional manifold (one boundary of this
three-dimensional manifold is the null-surfaceΣ(0)). Let us think ofρ, σ, τ as coordinates on
this three-dimensional manifold. ConsiderEq. (12):Dτ∂τx(ρ, σ, τ) − ρDσ∂σx(ρ, σ, τ) = 0.
Differentiate it with respect toρ:

DρDτ∂τx − Dσ∂σx − ρDρDσ∂σx = 0. (17)

Now we have to take into account that the covariant derivatives do not commute. They do not
commute because the target space has a non-zero Riemann tensor. To define the Riemann
tensor, one takes two vector fieldsξ, η and computes the commutator of the covariant
derivatives along these two vector fields. The result is a section of End(T )(AdS5 × S5)—
the bundle of linear maps from the tangent space to itself. This section is a bilinear function
of ξ, η calledR(ξ, η):

R(ξ, η) = −∇ξ∇η + ∇η∇ξ + ∇[ξ,η] . (18)

For givenξ andη, R(ξ, η) is amatrixacting in the tangent space toAdS5 × S5. The vector
fields∂ρ, ∂σ and∂τ are defined only on the three-dimensional submanifold. But still, we can
compute their commutators and the commutators of the corresponding covariant derivatives.
We get, in particular, [∂ρ, ∂τ ] = 0 and therefore

[Dρ,Dτ ] = −R(∂ρ, ∂τ).

Let us use this formula in (17). Taking into account also thatDρ∂τx = Dτ∂ρx we get:

DτDτ∂ρx + R(∂τx, ∂ρx)∂τx − Dσ∂σx − ρDρDσ∂σx = 0. (19)

In this equation, let us putρ = 0. Since∂ρx|ρ=0 = η1 we get (14).
Now we will consider the inhomogeneous Jacobi equation in the special case whenΣ(0)

is ruled by the orbits of the light-like Killing vector field. Our aim is to show that in this
special case there are solutions satisfying (4).

2.3. A special case of the inhomogeneous Jacobi equation

We will start by rewriting (14) in the special case whenΣ(0) is ruled by the orbits ofV,
that is∂τx0 = V (x0):

D2η

∂τ2
+ R(V, η)V = D

∂σ

∂x0

∂σ
. (20)

Let us introduce an abbreviation for the covariant derivative; for two vector fieldsα andβ
we will denoteα · βµ = αν∇νβ

µ. Taking into account (18) we have:

Dτη = V · η = [V, η] + η · V, (21)

D2
τη = V · (V · η) = V · [V, η] + [V, η] · V − R(V, η)V, (22)

= [V, [V, η]] + 2[V, η].V − R(V, η)V. (23)
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This allows us to rewrite (20) as:

[V, [V, η]] + 2[V, η] · V = D

∂σ

∂x0

∂σ
. (24)

SinceV is a Killing field, its covariant derivative is antisymmetric:∇µVν = −∇νVµ. There-
fore for any vector fieldαwe can writeα · V = ιαωwhereωµν = ∇µVν is a closed two-form.
With this notationEq. (24) becomes:

[V, [V, η]] + 2ι[V,η]ω = D

∂σ

∂x0

∂σ
. (25)

The null-surfaces ruled by the orbits of the null Killing correspond to operators of the
form trF (X, Y,Z). Consider a degenerate surfaceΣ(0) generated by the orbits ofV and
its deformationΣ(ε) corresponding to turning on the coupling constant. AlthoughΣ(0)
is invariant underV, its deformationΣ(ε) is not invariant. Let us consider the translation
of Σ(ε) by the vector fieldV with the parameterµ, schematically eµV · Σ(ε). This corre-
sponds to the action of the renormgroup on the operator in the theory with a finite coupling
constant. The operators of the type trF (X, Y,Z) are only mixing among themselves under
the renormgroup at the level of one loop. This implies that the translation alongV of the
deformation of the null-surface ruled by the orbits ofV should be the deformation of some
other null-surface which is also ruled by the orbits ofV. For the infinitesimal deformation
this means that

[V, [V, η1]] = 0. (26)

Indeedµε2[V, η1] is the variation of the deformed worldsheet under the shift by eµV ·. Then
the condition [V, [V, η1]] = 0 implies that:

1. [V, η1] is a solution of thehomogeneousJacobi equation and thereforex0 + µε2[V, η1]
can be considered as defining the deformed null-surface.3

2. This deformed null surface is again ruled by the orbits ofV.

Therefore under the condition (26) the shift ofΣ(ε) by V can be “compensated” by the
deformation ofΣ(0), and the deformedΣ(0) is again ruled by the orbits ofV. This is
precisely the statement that the diagram (8) is commutative, to the first order inε2.

Can we findη1 satisfying (25) and (26)? It turns out that we can. Indeed, with the
condition (26) Eq. (25) becomes:

2ιζω = D

∂σ

∂x0

∂σ
, (27)

where we denoted

ζ = [V, η1].

3 That this deformed surface is degenerate follows from the constraints (15) and (16) and fromVbeing a Killing
vector.
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We want to study the space of solutions ofEq. (27). The 2-formω is degenerate, therefore
we have to make sure that the right hand side of (27) belongs to the image ofω. To describe
the kernel ofω we decomposeV = VAdS5 + VS5. HereVAdS5 is the component ofV in the
tangent space toAdS5 andVS5 is the component in the tangent space toS5. The kernel
of ω is generated byV andṼ = VAdS5 − VS5. Notice thatDσ∂σx0 is orthogonal toV (the
proof of this fact uses thatV is a Killing vector andV is orthogonal to∂σx0). Therefore
it is orthogonal to one of the vectors in the kernel ofV. It does not follow thatDσ∂σx0 is
orthogonal toṼ . But remember that∂σx0 is defined moduloV. Adding to∂σx0 something
proportional toVwe can make it orthogonal tõV . Indeed, we have

(Ṽ ,Dσ∂σx0) = ∂σ(Ṽ , ∂σx0). (28)

and one can changex0 to x̃0 where

∂σx̃0 = ∂σx0 −
(

(Ṽ , ∂σx0) − C

(Ṽ , V )

)
V, (29)

whereC is a constant. We adjustC so thatx̃0 is periodic. We have (̃V, ∂σx̃0) = C. Now
(Ṽ ,Dσ∂σx̃0) = 0 and thereforeDσ∂σx̃0 is orthogonal to the kernel ofω and thereforeω is
invertible on it.

We have to also take care of the constraints (15) and (16). Notice thatζ = [V, η1] is
determined from (27) only up to a linear combination ofV andṼ . The coefficient ofV is
undetermined and corresponds to theσ-dependent rescaling of the affine parameter on the
light ray. The coefficient of̃V is fixed to satisfy (16). After that [V, η1] is completely fixed
moduloV. It remains to satisfy (15). Let us rewrite (15) in the following form:

(V · η1, ∂σx0) + (Dση1, V ) = ([V, η1], ∂σx0) + (Dση1, V ) − ω(∂σx0, η1) = 0. (30)

We can look forη1(τ = 0, σ) in the form η1|τ=0 = α(σ)Ṽ + β(σ) whereβ is a vector
orthogonal to bothV andṼ andα is a function ofσ such that:

2∂σα = −([V, η1], ∂σx0) + ω(∂σx0, β).

There is a freedom in the choice ofβ, the only constraint is thatα determined from this
equation should be a periodic function ofσ. This is the freedom to add toη1 a constant
vector,η1 (constant means [V,,η1] = 0) satisfying (Dσ,η1, V ) + (V · ,η1, ∂σx0) = 0.
This corresponds to theε2-deformation of the null-surface remaining the null-surface.

The solutions of (25) which have [V, [V, η1]] �= 0 correspond to operators of the form
O+ (λ/J2)Õ whereÕ is not annihilated by the symmetry corresponding toV.

2.4. Example: the two-spin solution

Here we will consider as an example the two-spin solution of[18]. This solution is of
the type considered in this section, the corresponding null-surface isV-invariant. We will
reproduce the terms of the orderε2 in the expansion of the worldsheet near the null-surface.

Let us parameterize the sphereS5 by the three complex coordinatesYI = xI eiφI with∑3
I=1 x2

I = 1. Of the AdS space we will need only a timelike geodesic, which we parame-
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terize byt. The metric is−dt2 + ∑ |dYI |2. The lightlike Killing vector is

V = ∂

∂t
+

3∑
I=1

∂

∂φI

.

Consider the following null-surfacexµ0 (σ, t):

xI = xI (σ), φI (t) = t. (31)

The one-formgµνV
ν is4 V = −dt + ∑

x2
I dφI , thereforeω = ∑

dx2
I ∧ dφI . For any vector

ξ we haveιξω = (1/2)
∑

[(ξ · x2
I ) dφI − (ξ.φI ) dx2

I ]. The one-form on the right hand side
of (27) is:

Dσ∂σx =
∑
I

(Dσ∂σxI ) dxI . (32)

Eq. (27), together with the constraint (V, [V, η]) = −(1/2)(∂σx)2 can be solved as follows:

[V, η] = 1

2
(∂σx)2

∂

∂t
− 1

2

∑
I

x−1
I Dσ∂σxI

∂

∂φI

. (33)

This means, that on the initial surface (31) η is a linear function oft:

η = t

[
1

2
(∂σx)2

∂

∂t
− 1

2

∑
I

x−1
I Dσ∂σxI

∂

∂φI

]
. (34)

Let us compare this to the solution of[18]. The solutions of[18] correspond to a special
finite-dimensional subspace in the space of null-surfaces, such that the contoursx(σ, τ)|τ=τ0

are the periodic trajectories of the C. Neumann integrable system:

Dσ∂σxI = −w2
IxI + xI

∑
w2

Jx
2
J . (35)

On such contours,

η = t

[
1

2

(
(∂σx)2 +

∑
w2

Jx
2
J

) ∂

∂t
+ 1

2

∑
I

w2
I

∂

∂φI

]
modV (36)

The expressionκ2 = ∑
(∂σxI )2 + ∑

w2
Jx

2
J is twice the energy of the Neumann system. One

can see thatx0 + ε2η gives the zeroth and the first terms in the expansion of the solution of
Section 2.1 of[18] around the null-surface.5

3. The general case:V is not a Killing vector field

In AdS5 × S5 the null-geodesics are all periodic with the same period, in a sense that all
the light rays emitted from the given point in the future direction will refocus in the future at

4 We denote the one-form corresponding to the vectorV by the same letter; this should not lead to a confusion.
5 There is a difference in notations:κ2

[AFRT] = 1 + ε2κ2, w2
I[AFRT] = 1 + ε2w2.
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some other point. This implies that the null-surfaces inAdS5 × S5 are all periodic with the
same integer period. The null-surfaces should correspond to the large charge operators at
zero coupling; the periodicity of the null-surface corresponds to the fact that the operators
in the free theory have zero anomalous dimension.

Turning on a small coupling constant corresponds to considering the extremal sur-
faces which are very close to being null. Such surfaces are the worldsheets of the “ultra-
relativistic” strings. Naively one could think that the extremal surfaces which are close to
the null-surfaces are periodic modulo small corrections. But this is not true[13]. It turns
out that the worldsheet of the ultrarelativistic string is close to the degenerate surface only
locally, in the following sense. For each point on the worldsheet there is a neighborhood
with the coordinate size of the order the AdS radius where the surface is indeed close to
some null-surface. But as we follow the time evolution the deviation of the extremal sur-
face from the null-surface accumulates in time, and eventually becomes of the order of
the radius of the AdS space. This is a manifestation of the general phenomenon which
is known in classical mechanics as the “secular evolution” or the “long-term evolution”
of the perturbed integrable systems[19]. If the string worldsheet was originally close to
a null-surfaceΣ(0) then after evolving for a period of time,T ∼ ε−2 it will be close
to some other null-surfaceΣ(0)(ε

2,T ) which is different fromΣ(0). Therefore we get a
one-parameter family of transformations on the moduli space of the null-surfaces with the
parameter,T , or ratherε2,T . We call these transformations the “long term evolution” of
the null-surfaces. In fact the fast moving string determines a null-surface and its parameteri-
zation, therefore we have a family of transformations on the moduli space of parameterized
null-surfaces.

Before we proceed with the analysis of the string, we outline a general situation when
this slow evolution is usually found. Suppose that we have an integrable system on the
phase spaceM with the HamiltonianH0, andH0 + ε2,H is a perturbed Hamiltonian. We
are interested in the special case when the phase spaceM has a submanifoldMT ⊂ M

closed under the flow ofH0, such thatH0|MT is constant and all the trajectories ofH0 on
MT are periodic with the same periodT. Also, we require that the perturbation is such that
the trajectories ofH0 + ε2,H which started nearMT will stay nearMT at least on the
time intervals,t ∼ ε−2. In other words, the trajectory of the perturbed Hamiltonian which
started onMT should be always close to some “approximating” periodic trajectory of the
unperturbed system. (This does not follow from anywhere; it is an additional assumption
which has to be verified.) The “approximating” periodic trajectory will slowly drift. Let
us calculate the velocity of the drift. Suppose that we started at the pointx0 ∈ MT on the
periodic trajectory ofH0 with the periodT. Let us denotex0(τ) the periodic trajectory of
H0 starting atx0. The perturbation drives us away from this periodic trajectory. Taken
an integer,n � ε−2. After the time intervalnT we are close to the original pointx0. The
deviation fromx0 is:

δx = ε2
∫ nT

0
dτ(e(nT−τ)H0)∗ω−1 d(,H)(x0(τ)) + o(ε2). (37)
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Here (e(nT−τ)H0)∗ denotes the translation of the vector in the tangent space toM at the point
x0(τ) forward to the pointx0(nT ) = x0 by the flow ofH0. Let us computeιδxω:

ιδxω = ε2
[∫ nT

0
dτ(e−(nT−τ)H0)∗ d,H(x0(τ))

]
+ o(ε2). (38)

Because of our assumption the component ofδx which is transverse toMT does not ac-
cumulate in time. This means that for sufficiently largen we have (1/n)δx approximately
tangent toTx0MT (the component transverse toTx0MT is of the orderε2/n.) The one-form
on the right hand side of (38) simplifies if we restrict it to the tangent space toMT . If we
takeξ ∈ Tx0MT and computeω(δx, ξ), we will get the difference ofε2

∫ nT

0 ,H = nε2�H
on the periodic trajectory going throughx0 + ξ and the periodic trajectory going through
x0. In this sense,

ιδxω|Tx0MT = nε2 d�H. (39)

We have the following picture. Consider the restriction ofω onMT . BecauseH0|MT = const
the tangent vector to the periodic trajectory is in the kernel ofω|MT . This means thatω|MT

defines a closed two-form on the space of periodic trajectories with the periodT, which
we will denote�. The “averaged” Hamiltonian�H is a function on this space of periodic
trajectories. The secular evolution is the vector fieldξ on the space of periodic trajectories
which satisfies

ιξ� = d�H. (40)

In the rest of this section we will apply this general scheme to the ultrarelativistic string in
AdS5 × S5.

3.1. Hamiltonian approach to the fast moving strings

Consider the fast moving string inAdS5 × S5. As explained in Section 2.2 of[16] we can
parameterize the worldsheet by the coordinatesσ andτ such that the embedding functions
satisfy the constraints:

(∂τx, ∂τx) + ε2(∂σx, ∂σx) = 0, (41)

(∂τx, ∂σx) = 0. (42)

These conditions do not completely fixσ andτ. They are preserved by the infinitesimal
reparameterizations of the following form:

δ(fL,fR)x = [fL(σ + ετ) + fR(σ − ετ)]
∂x

∂τ
+ ε[fL(σ + ετ) − fR(σ − ετ)]

∂x

∂σ
. (43)

We will assume thatx is a series in even powers ofε: x = x0 + ε2η1 + ε4η2 + · · ·; this form
of x is preserved by the transformations (43) with

fL = f0 + εf1 + ε2f2 + · · · ,

fR = f0 − εf1 + ε2f2 − · · · .
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Using this residual freedom in the choice of the coordinates we can impose the following
condition on the projection of the string worldsheet onS5:

(∂τxS5, ∂σxS5) = C + O(ε2), (44)

(∂τxS5, ∂τxS5) + ε2(∂σxS5, ∂σxS5) = −1 + C̃ε2 + O(ε4), (45)

whereC and C̃ are both constants (do not depend onσ). Rescalingε and τ by ε2 →
(1 − C̃ε2)ε2 andτ → (1 − C̃ε2)−1/2τ we can put

C̃ = 0. (46)

The initial conditions (44) and (45) are preserved by the equation of motionDτ∂τx −
ε2Dσ∂σx = 0. This particular choice of the coordinates simplifies the calculations.

In the limit ε = 0 the worldsheet of the string becomes a collection of non-interacting
massless particles. This limiting system can be described by the action

S0 = 1

2

∫
dτ

∫ 2π

0
dσ

(
∂x

∂τ
,
∂x

∂τ

)
, (47)

which is the first term of (11). (In this section we will omit the overall coefficient
(
√
λ/4π)(1/ε) in front of the action.) Introduction ofε > 0 corresponds to the perturbation

of this system by the interaction between particles, which is described by the second term
on the right hand side of (11). The interaction term is

,S = 1

2
ε2

∫
dτ

∫ 2π

0
dσ

(
∂x

∂σ
,
∂x

∂σ

)
. (48)

Let us reformulate this problem in the Hamiltonian approach. We will begin with the study
of the unperturbed system (47). Consider first theSn part. The unperturbed system can be
thought of as a continuous family of free non-interacting particles moving on a sphere. For
every fixedσ = σ0, x(τ, σ0) describes the motion of a free particle which is independent of
particles corresponding to otherσ �= σ0. The momentum conjugate tox ∈ Sn isp = ∂x/∂τ,
and the Hamiltonian isH0 = (1/2)(p, p). This system is integrable. For everyσ the corre-
sponding point of the string moves on its own geodesic inSn, different geodesics for different
values ofσ, and the velocity generally speaking may also depend onσ. The geodesics inSn

are periodic. We can parameterize every geodesic by an angleψ ∈ [0,2π]. For eachσ the
“angle” variableψ(σ) satisfies∂τψ(σ, τ) = f (σ) wheref (σ) is theσ-dependent frequency.
We want to study the effect of the small perturbation (48). Let us first introduce some useful
notations.

Particle on a sphere. We will consider two symplectic manifolds. The first is the phase
space of a free particle moving on a sphere with the Lagrangian (˙x, ẋ); we will denote it
M. This is the cotangent bundle of the sphereM = T ∗Sn. The second symplectic manifold
is the moduli space of the geodesics inSn; we will call it G. The natural symplectic form
on G can be constructed in the following way. Let us parameterize each geodesic by an
angleψ; we have (∂ψx, ∂ψx) = 1. The tangent space to the moduli space of geodesics at
a given geodesic is given by the Jacobi vector fieldsξ which satisfy the Jacobi equation
D2

ψξ − R(∂ψx, ξ)∂ψx = 0. Given two Jacobi vector fieldsξ1 andξ2 we define the symplectic



A. Mikhailov / Journal of Geometry and Physics 54 (2005) 228–250 241

form:

�(ξ1, ξ2) = −(ξ1,Dψξ2) + (Dψξ1, ξ2). (49)

The right hand side is evaluated at a particular point on the geodesic (at some particular
ψ). But it does not depend on the choice of this point (because of the Jacobi equation). It
is closed because it is actually a differential of the one-form (∂ψx, ξ); this one-form does
depend on the choice of a point on a geodesic, but its differential does not. Also, a “trivial”
Jacobi fieldξ2 = ∂ψx corresponding to the shift along the geodesic is in the kernel of�.
Indeed,

�(ξ, ∂ψx) = (Dψξ, ∂ψx) = 0

because (∂ψx, ∂ψx) = 1 for both the original geodesic and its infinitesimal deformation by
the Jacobi fieldξ. Therefore� is a well defined two-form on the moduli space of geodesics.

Consider the subspaceM× ⊂ M of the phase space where the velocity of the particle
is nonzero. It is a fiber bundle over the moduli space of geodesicsG. Indeed, the position
and the velocity of the particle uniquely determines the geodesic on which the particle is
moving. This defines a projection map:

π : M× → G (50)

from the phase space of the particle to the moduli space of geodesics. We will try to use
boldface letters to denote objects onG to distinguish them from the functions and forms
onM. We decided to use a boldface to denote the projection map because it takes values in
G, soπ(p, x) determines a point inG. The fiber ofπ is S1 × R× whereR× is a real line
without zero. TheS1 parameterizes the positionψ on the geodesic andR× determines the
velocityf = √

E where we denotedE = (p, p). Let us introduce the 1-formDφ onM×:

Dφ = (p,dx)

(p, p)
. (51)

It is characterized by the properties: (1) the restriction ofDφ on the fiberS1 × R× is
E−1/2 dψ whereψ is the angle onS1 and (2) it is zero on any vector inTM× having
a projection onTSn orthogonal top. For a vectorv ∈ TG we will define a liftπ−1v as a
vector inTM× with π∗(π−1v) = v and dE(π−1v) = 0 andDφ(π−1v) = 0. This determines
the connection on the fiber bundleM× → G.

The symplectic form onM× can be written in terms ofDφ and the pull-back of the
symplectic form onG:

ω = 1
2 dE ∧Dφ + √

Eπ∗�. (52)

Particle onAdSm × Sn. It is straightforward to write the analogue of (52) for the particle
moving onAdSm and onAdSm × Sn. We considerAdSm × Sn with the metric of the mostly
negative signature (that is, the metric onSn is considered negative definite). For two vectors
ξ, η in the tangent space toAdSm × Sn we denote (ξ, η)A the scalar product of theirAdSm

components, and (ξ, η)S the scalar product of theirSn components. In general, the index
Awill denote objects onAdSm and the indexSobjects on the sphere. Let us introduce the
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notations:

EA = (p, p)A, ES = (p, p)S, (53)

DφA = E−1
A (p,dx)A, DφS = E−1

S (p,dx)S (54)

(Notice thatEA is positive andES is negative.) We have

π∗�A = (dp ∧ dx)A

E
1/2
A

− (p,dp)A ∧ (p,dx)A

E
3/2
A

,

π∗�S = (dp ∧ dx)S
(−ES)1/2

+ (p,dp)S ∧ (p,dx)S
(−ES)3/2

.

Therefore

ω = 1
2 dEA ∧DφA + 1

2 dES ∧DφS + √
EAπ∗�∗

A + √−ESπ
∗�∗

S. (55)

Hereπ∗�∗
A andπ∗�∗

S are lifted from the moduli space of geodesics onAdSm andSn,
respectively;DφS = (p,dx)S/(p, p)S .

String onAdSm × Sn. Let us proceed with our original system, which is a continuous
family of free particles. The phase space of the system is the “loop space”LM which
consists of the contours (p(σ), x(σ)) satisfying the constraints (p, ∂σx) = 0 and (p, p) +
ε2(∂σx, ∂σx) = 0. The symplectic form is an integral overσ:

ω =
∫

dσ

[
1

2
dEA(σ) ∧DφA(σ) + 1

2
dES(σ) ∧DφS(σ)

+
√
EA(σ)π∗�∗

A(σ) +
√

−ES(σ)π∗�∗
S(σ)

]
. (56)

We want to derive an evolution equation onLG. We use the boldface for the objects living
onGorLG, therefore our goal is to arrive at the equation where all the letters are bold. The
differential of the perturbation Hamiltonian is

d,H =
∫

dσ(∂σx,Dσ dx) = −
∫

dσ(Dσ∂σx,dx).

Let us decompose dx as the sum of the component parallel top = ∂τx and the component
orthogonal top. We get:

d,H =
∫

dσ[−(p(σ),Dσ∂σx)ADφA(σ) − (p(σ),Dσ∂σx)SDφS(σ)

− (dx(σ), (Dσ∂σx)⊥)]. (57)

Here (Dσ∂σx)⊥ = Dσ∂σx − [(p,Dσ∂σx)A/(p, p)A]pA − [(p,Dσ∂σx)S/(p, p)S ]pS . The
one-form (dx, (Dσ∂σx)⊥) is an element of the cotangent spaceT ∗

(p,x)M to the phase space
at the point (p, x). It is horizontal in the sense that its value on∂/∂EA, ∂/∂ES , ∂/∂φA and
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∂/∂φS is zero. This means that it is a pullback of some formα(p, x) on the tangent space to
G at the pointπ(p, x):

(dx, (Dσ∂σx)⊥) = π∗α(p, x). (58)

To avoid confusion, we want to stress that this formα(p, x) ∈ T ∗
π(p,x)G depends on (p, x)

and not just on the projectionπ(p, x). That is why we did not use the boldface forα. Given
Eq. (58) for dH and the symplectic form (56) onLM we can write down the Hamiltonian
vector field:

ω−1 d(H + ε2,H)

= ∂

∂φA

+ ∂

∂φS

+ ε2
[
(p,Dσ∂σx)A

∂

∂EA

+ (p,Dσ∂σx)S
∂

∂ES

− π−1�−1α(p, x)

]
.

(59)

Long term evolution. The coefficients of∂/∂EA and∂/∂ES describe the evolution of the
frequency:

EA(τ) = EA(0) + ε2
∫ τ

0
dτ′(p(σ, τ′),Dσ∂σx(σ, τ′))A,

ES(τ) = ES(0) + ε2
∫ τ

0
dτ′(p(σ, τ′),Dσ∂σx(σ, τ′))S.

We want to study the evolution over the period up to the orderε2 therefore we can replace on
the right hand sidex(σ, τ′) andp(σ, τ′) with the unperturbed motionx0(σ, τ′) andp0(σ, τ′).

We can now see thatEA(τ) andEB(τ) oscillates aroundEA(0) andEB(0). Indeed, taking
into account the initial condition (44) we have:∫

dτ′(∂τ′x(σ, τ′),Dσ∂σx(σ, τ′))A = −1

2

∫
dτ′ ∂

∂τ′ (∂σx(σ, τ′), ∂σx(σ, τ′))A = 0 (60)

because of the periodicity. Therefore the variations of the frequency do not accu-
mulate over time. The initial conditions (45) imply that EA(0) = 1 − ε2(∂σx, ∂σx)A +
(terms of the higher order inε2).

But the variation of the shape of the contour does accumulate. Forτ of the order 1/ε2

the change in the shape of the contour will be of the order 1. Indeed (59) implies that the
projection of the trajectory onG satisfies:

∂τπ(p, x) = −ε2�−1α(p, x) (61)

The variation of the geodesic over one period is therefore:

δπ = −�−1
∫ 2π

0
dψ α(p0, x0(ψ)). (62)

Again, we neglected the higher order terms inε2 and replaced all the (p(τ), x(τ)) on the
right hand side of (61) by the unperturbedp0(τ), x0(τ). Also, following the notations in
(49) we replaced the timeτ with the angleψ parameterizing the geodesic. Notice that
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∫ 2π
0 dψ α(p0, x0(ψ)) is the differential of the function on the baseG which is obtained by

the integration of,H overψ:∫ 2π

0
dψ α = d�H, (63)

�H = 1

2

∫ 2π

0
dψ

∫ 2π

0
dσ(∂σx0(ψ, σ), ∂σx0(ψ, σ)). (64)

Let us prove it. We have∫
dψ α =

∫
dψ dσ(Dσ dx⊥(ψ, σ), ∂σx(ψ, σ)) (65)

By definition dx⊥ = dx − (dx, ∂ψx)A∂ψxA + (dx, ∂ψx)S∂ψxS . (Remember that in our no-
tations the metric onS5 is negative definite.) Therefore:∫

dψ α =
∫

dψ dσ(Dσ dx, ∂σx) −
∫

dψ dσ(Dσ((∂ψx,dx)A∂ψx), ∂σx)A

−
∫

dψ dσ(Dσ((∂ψx,dx)S∂ψx), ∂σx)S.

But the second and the third terms on the right hand side are zero on the initial conditions
(44). Therefore

∫
dψ α = d�H as we wanted.

Now we can compute the variation ofπ(p, x) over the period:

δπ = −ε2�−1 d�H(π). (66)

Introducingt = ε2τ we obtain the equation for the secular evolution:

∂π

∂t
= −�−1 d�H(π). (67)

In this equation all the letters (except ford and∂) are boldface, as we wanted. It describes
the evolution of the contour in the moduli space of null-geodesics onAdSm × Sn.

3.2. Summary

The effective Hamiltonian is a functional on the space of parameterized null-surfaces:

�H = 1

2

∫ 2π

0
dψ

∫ 2π

0
dσ(∂σx, ∂σx). (68)

Hereψ is the affine parameter on the light rays and that the periodicity of the light rays
is ,ψ = 2π. The remaining coordinate freedom is in the choice of the closed contour
ψ = const., but the integral (68) does not depend on this choice. Therefore it is a functional
on the space of parameterized null surfaces.

The symplectic form on the space of parameterized null-surfaces is

� =
∫

dσ(dx ∧ Dψ dx). (69)
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This symplectic form has a straightforward geometrical interpretation. Notice that the space
of classical string worldsheets has a natural symplectic form which is defined in the following
way. The deformations of the string worldsheet are described by the vector fieldsξ(σ, τ).
The value of the symplectic form on two infinitesimal deformationsξ1 andξ2 is

Ωstring(ξ1, ξ2) =
√
λ

2π

∮
((ξ1, ∗Dξ2) − (ξ2, ∗Dξ1)). (70)

HereD is the covariant differential on the worldsheet, the metric on the worldsheet is
induced from the space–time, the integral is taken over a closed spacial contour and the
fieldsξ1 andξ2 are chosen to preserve the conformal structure on the worldsheet (they are
originally defined only up to the vector tangent to the worldsheet). The symplectic form
(69) on the space of null-surfaces is the ultrarelativistic limit of the symplectic form (70)
on the phase space of the classical string. Indeed, whenε → 0 (70) becomes

Ωstring =
√
λ

2πε

∫
(dx ∧ Dψ dx). (71)

As we will explain inSection 3.4, this equation justifies our definition of the small parameter
ε and the parameterizationσ. Indeed, the right hand side agrees on the field theory side with
the symplectic structure of the continuous limit of the spin chain. The parameterσ should
be identified with the number of the site divided by the length of the chain.

In the end of this section we will derive this evolution equation (67) directly from the
inhomogeneous Jacobi equation. But first we want to rewrite (67) in a more explicit form
and discuss its interpretation in the dual gauge theory.

3.3. Explicit evolution equations

Here we will realize the moduli space of geodesics as a quadric in the complex projective
space and write the evolutionEq. (67) in the explicit form. Let us start with theSn part.
Geodesics onSn are equators:

x0(τ, σ) = e1(σ) cosτ + e2(σ) sinτ. (72)

They are parameterized by a pair of orthogonal vectorse1 ande2 modulo the orthogonal
transformations mixinge1 ande2. As a manifold it is the Grassmanian of two-dimensional
planes in then + 1-dimensional space,G = Gr(2, n + 1). Let us introduce a complex
vectorZ = e1 + ie2 in Cn+1. It has the properties (Z,Z) = 0 and (̄Z,Z) = 2. Given the
equator,Z is determined up to a phaseZ → eiαZ. Therefore the moduli space of geodesics
is a quadric in the complex projective spaceCPn given in the homogeneous coordinates
[Z1 : · · · : Zn+1] by the equation (Z,Z) = 0. Similarly, the moduli space of geodesics on
AdSm is a quadric inCPm given in the homogeneous coordinates [Y−1, Y0, . . . , Ym−1] by
the equation (Y, Y ) = Y2

−1 + Y2
0 − Y2

1 − · · · − Y2
m−1 = 0.

In our application we need actually not just the geodesic, but also the position of the
point on it. Therefore we have to keep the phases ofZ andY. The position of the point of
the string inAdSm × Sn is given by

(xA, xS) = (ReY,ReZ)
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and the velocity is

(pA, pS) = (
√
EA Im Y,

√
−ES Im Z).

The averaged perturbation Hamiltonian is

�H = 1

4

∫
dσ[(∂σȲ , ∂σY ) − (∂σZ̄, ∂σZ)] (73)

with the constraint

(Ȳ , ∂σY ) − (Z̄, ∂σZ) = 0. (74)

The symplectic form

Ω = 1

2i

∫
dσ((dȲ ∧ dY ) − (dZ̄ ∧ dZ)). (75)

The Hamiltonian flow (59) averaged over the periodis:

∂τY = i[(1 − 1
2ε

2(∂σȲ , ∂σY ))Y − 1
2ε

2∂2
σY − 1

4ε
2(∂σY, ∂σY )Ȳ ],

∂τZ = i[(1 − 1
2ε

2(∂σZ̄, ∂σZ))Z − 1
2ε

2∂2
σZ − 1

4ε
2(∂σZ, ∂σZ)Z̄]. (76)

The terms proportional toY andZ are fixed from the initial condition (45), and the terms
proportional toȲ andZ̄ are such that (∂τY, Y ) = 0 and (∂τZ,Z) = 0.

3.4. Interpretation in the dual field theory

To interpret these equations on the field theory side we have to consider the single trace
operators with large R-charge. In the “continuum limit”Z corresponds to the local density
of the R charge. The operators corresponding to the speeding strings are “locally half-BPS”
[14]. Therefore the density of the R charge should be a decomposable element of so(6)
which means that (Z,Z) = 0. Following the idea of[13] we can interpretZ as parame-
terizing a point on the coadjoint orbit of so(6) consisting of the decomposable elements.
Decomposable elements are those antisymmetric matrices which can be represented as an
antisymmetric product of two orthogonal vectorse1 ∧ e2; thenZ = e1 + ie2. This orbit
corresponds in the sense of[20] to the vector representation of so(6) which lives on the sites
of the spin chain.

Let us now add the AdS part. Consider the orbit of so(2,4) consisting of the elements
of the formY ∧ Ȳ whereY = ẽ1 + iẽ2 with (Y, Y ) = 0 and (̄Y, Y ) = 2. Just as a geodesic
in S5 is defined byZmodulo a phase, a geodesic inAdS5 is defined byYmodulo a phase.
Roughly speaking, a pair of functions (Z(σ), Y (σ)) where bothZ(σ) andY (σ) are defined
modulo local phase rotations (independent forZandY) define a null-surface inAdS5 × S5.
But there is a subtlety. For the corresponding surface to be null we have to be able to fix the
relative phase ofYandZ in such a way that

(Z̄, ∂σZ) = (Ȳ , ∂σY ). (77)

This imposes the following integrality condition on the functionsY (σ) andZ(σ). Let us
consider a two-dimensional surfaceDZ inCP6 such that its boundary is the contour [Z(σ)]
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and a two-dimensional surfaceDY in CP2+4 such that its boundary is the contour [Y (σ)].
The integrality condition is that the symplectic area ofDY should be equal to the symplectic
area ofDZ plus an integer. On the field theory side this integrality condition corresponds
to the cyclic invariance of the trace.

To summarize, let us consider two functions [Y ] : S1 → CP2+4 and [Z] : S1 → CP6

satisfying (Y, Y ) = (Z,Z) = 0 and the integrality condition described above. The integral-
ity condition guarantees that we can lift [Z] and [Y ] to the functionsY : S1 → C2+4 andZ :
S1 → C6 satisfying (77). Let us fix such a lift modulo an overall phase (Y,Z) ∼ eiφ(σ)(Y,Z).
This data determines the null surface inAdS5 × S5 corresponding to the Yang–Mills oper-
ator with the anomalous dimension

ε

√
λ

8π

∫
dσ((∂σZ̄, ∂σZ) − (∂σȲ , ∂σY )). (78)

In this formula we have restored the coefficient
√
λ/4πε from Eq. (11). The integral does

not depend on the “overall” phase of (Y,Z).
The precise relation betweenεandλcan be obtained by computing the conserved charges.

Consider a Killing vector fieldU onS5. We have

δUxi = uijxj, (79)

wherexi, i = 1, . . . ,6 denote a unit vector representing the point ofS5 anduij is an an-
tisymmetric matrix corresponding to the symmetryU. Let us compute the corresponding
conserved charge to the first order inε. We have:

QU = 1

ε

√
λ

2π

∫ 2π

0
dσ uijx

j

0(τ, σ)∂τx
i
0(τ, σ). (80)

By definitionx0(τ, σ) should belong to the geodesic specified byZ(σ), and∂τxi = ((i/2)Z ∧
Z̄)ijxj. This means that the charge is:

QU = 1

ε

√
λ

2π

∫ 2π

0
dσ

(
u,

i

2
Z̄ ∧ Z

)
. (81)

But (i/2)Z̄ ∧ Z should be the local density of the R charge. Therefore we identify

ε =
√
λ

2π(L/2π)
, (82)

whereL is the length of the spin chain (the number of operators under the trace.) Substitution
of ε in (78) gives:

, = 1

16π2

λ

L/2π

∫ 2π

0
dσ((∂σZ̄, ∂σZ) − (∂σȲ , ∂σY )). (83)

This is a functional on the space of contours (Y (σ), Z(σ)) in C12, subject to the con-
straints |Y |2 = |Z|2 = 2 and (̄Z, ∂σZ) = (Ȳ , ∂σY ) and defined up to an overall phase
(Y (σ), Z(σ)) → eiφ(σ)(Y (σ), Z(σ)). The symplectic structure on this space is given in (75).



248 A. Mikhailov / Journal of Geometry and Physics 54 (2005) 228–250

3.5. Comment on the special case whenΣ(0) is generated by the orbits of V

In the special case whenΣ(0) is generated by the orbits ofV the anomalous dimension
can be computed in two different ways. One way is to compute the conserved charge
corresponding toVas was done in[7]. The other way suggested in[13] is to study the secular
evolution ofΣ(ε) and find the Hamiltonian governing this evolution. The two methods give
the same result for the following reason. The constraint (∂τx)2 + ε2(∂σx)2 = 0 says that
the total perturbed HamiltonianH0 + ε2,H should be zero. The “effective” Hamiltonian
governing the secular drift is obtained by the averaging of,H over the period. Because of
the constraint we haveε2,H = −H0. But in the vicinity ofΣ(0) we haveH0 equal to the
chargeQV up to the terms of the higher order in the deviation fromΣ(0). (This follows
from the fact that the Hamiltonian flow ofH0 onΣ(0) is the translation byV.)

3.6. Direct derivation from the Jacobi equation

We derived (67) and (76) using the Hamiltonian formalism. Here we will give a direct
derivation from the inhomogeneous Jacobi equation.

Let us study the inhomogeneous Jacobi equation in the special case of AdS times a
sphere:

D2
τη − R(∂τx, η)∂τx = Dσ∂σx. (84)

We can decompose∂τx as a sum of the vector∂τxAdS5 in the tangent space toAdS5 and
the vector∂τxS5 in the tangent space toS5, ∂τx = ∂τxAdS5 + ∂τxS5. We denote∂̃τx =
∂τxAdS5 − ∂τxS5. We will need the following representation forDσ∂σx:

Dσ∂σx = Dτξ + α(σ, τ)∂τx + β(σ, τ)∂̃τx, (85)

whereξ is a Jacobi field orthogonal to both∂τxand∂̃τxandα(τ) andβ(τ) are some functions.
Indeed, let us consider the projection of the geodesic onS5. The geodesic onS5 is an equator:

x(τ, σ) = e1(σ) cosτ + e2(σ) sinτ, (86)

where (e1(σ), e1(σ)) = (e2(σ), e2(σ)) = 1 and (e1(σ), e2(σ)) = 0. We have

Dσ∂σx = (e′′
1(σ) cosτ + e′′

2(σ) sinτ)‖, (87)

where the index|| means that we have to project to the tangent space ofS5 along the radial
direction. It is enough to consider this equation atσ = 0. Let us decompose the second
derivative ofei, i = 1,2 in the componentsai,tang andai,norm parallel to the plane (e1, e2)
and the components (e′′

i )vert perpendicular to this plane:

e′′
1 = a1,te2 + a1,ne1 + (e′′

1)vert, (88)

e′′
2 = a2,te1 + a2,ne2 + (e′′

2)vert. (89)

The second covariant derivative is:

Dσ∂σx(τ, σ) = (a1,t cos2 τ − a2,t sin2 τ + (a2,n − a1,n) cosτ sinτ)

× ∂τ(e1 cosτ + e2 sinτ) + (e′′
1)vert cosτ + (e′′

2)vert sinτ. (90)
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The analogous expression holds for theAdS5-component ofDσ∂σx. But (e′′
1)vert cosτ +

(e′′
2)vert sinτ = ∂τ((e′′

1)vert sinτ − (e′′
2)vert cosτ) and

ξ = (e′′
1)vert sinτ − (e′′

2)vert cosτ

is a Jacobi field. This proves (85). Notice thatξ andDτξ are orthogonal to both∂τx and
∂̃τx. We can now present a solution to the equation (84):

η = 1
2τξ + A∂τx + B∂̃τx, (91)

whereAandB satisfy∂2A/∂τ2 = α and∂2B/∂τ2 = β. It is important that bothAandB can
be chosen periodic functions ofτ. This is true forB:∫

dτ β =
∫

dτ(∂τx,Dσ∂σx) = −1

2

∫
dτ∂τ(∂σx, ∂σx) = 0 (92)

and also forA, because∫
dτ α =

∫
dτ(∂̃τx,Dσ∂σx) (93)

= −1

2

∫
dτ∂τ [(∂σx, ∂σx)AdS5 − (∂σx, ∂σx)S5] = 0 (94)

since the projections ofx to AdS5 andS5 are both periodic. Therefore we see thatη can
be chosen as a sum of the linearly growing term and the oscillating terms. The linearly
growing term is (1/2)tξ whereξ is a Jacobi field satisfyingDτξ = Dσ∂σx. This linear term
is responsible for the secular evolution.

Acknowledgments

I would like to thank S. Moriyama for discussions and M. Kruczenski and A. Tseytlin
for the correspondence. This research was supported by the Sherman Fairchild Fellowship
and in part by the RFBR grant no. 03-02-17373 and in part by the Russian Grant for the
support of the scientific schools no. 00-15-96557.

References

[1] J.K. Erickson, G.W. Semenoff, K. Zarembo, Wilson loops inN = 4 Supersymmetric Yang–Mills theory,
Nucl. Phys. B. 582 (2000) 155–175. hep-th/0003055.

[2] N. Drukker, D.J. Gross, An exact prediction ofN = 4 SUSYM theory for string theory, J. Math. Phys. 42
(2001) 2896–2914. hep-th/0010274.

[3] M. Blau, J. Figueroa-O’Farrill, C. Hull, G. Papadopoulos, A new maximally supersymmetric background of
IIB superstring theory, JHEP 0201 (2002) 047. hep-th/0110242.

[4] R. Metsaev, Type IIB Green–Schwarz superstring in plane wave Ramond–Ramond background, Nucl. Phys.
B 625 (2002). hep-th/0112044

[5] D. Berenstein, J. Maldacena, H. Nastase, Strings in flat space and pp waves fromN = 4 super Yang–Mills,
JHEP 0204 (2002) 013. hep-th/0202021.



250 A. Mikhailov / Journal of Geometry and Physics 54 (2005) 228–250

[6] D. Serban, M. Staudacher, PlanarN = 4 gauge theory and the Inozemtsev long range spin chain. hep-
th/0401057.

[7] S. Frolov, A.A. Tseytlin, Semiclassical quantization of rotating superstring inAdS5 × S5, JHEP 0206 (2002)
007. hep-th/0204226.

[8] A.A. Tseytlin, Semiclassical quantization of superstrings:AdS5 × S5 and beyond, Int. J. Mod. Phys. A 18
(2003) 981. hep-th/0209116.

[9] J.G. Russo, Anomalous dimensions in gauge theories from rotating strings inAdS5 × S5, JHEP 0206 (2002)
038. hep-th/0205244.

[10] J.A. Minahan, K. Zarembo, The Bethe–Ansatz forN = 4 super Yang–Mills, JHEP 0303 (2003) 013. hep-
th/0212208.

[11] N. Beisert, M. Staudacher, TheN = 4 SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439–463.
hep-th/0307042.

[12] A.A. Tseytlin, Spinning strings and AdS/CFT duality. hep-th/0311139.
[13] M. Kruczenski, Spin chains and string theory. hep-th/0311203.
[14] D. Mateos, T. Mateos, P.K. Townsend, Supersymmetry of Tensionless Rotating Strings inAdS5 × S5 and

Nearly-BPS Operators. hep-th/0309114hep-th/0309114;
D. Mateos, T. Mateos, P.K. Townsend, More on supersymmetric tensionless rotating strings inAdS5 × S5.
hep-th/0401058.

[15] P. Bozhilov, Exact string solutions in nontrivial backgrounds, Phys. Rev. D 65 (2002) 026004. hep-th/0103154;
D. Aleksandrova, P. Bozhilov, On the classical string solutions and string/field theory duality, JHEP 0308
(2003) 018. hep-th/0307113; D. Aleksandrova, P. Bozhilov, On the Classical String Solutions and String/Field
Theory Duality II. hep-th/0308087; P. Bozhilov, M2-brane solutions inAdS7 × S4, JHEP 0310 (2003) 032.
hep-th/0309215.

[16] A. Mikhailov, Speeding strings, JHEP 0312 (2003) 058. hep-th/0311019.
[17] J. Engquis, J.A. Minahan, K. Zarembo, Yang–Mills Duals for Semiclassical Strings onAdS5 × S5. hep-

th/0310188.
[18] G. Arutyunov, S. Frolov, J. Russo, A.A. Tseytlin, Spinning strings inAdS5 × S5 and integrable systems.

hep-th/0307191.
[19] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989.
[20] A.M. Perelomov, Coherent states for arbitrary lie groups, Commun. Math. Phys. 26 (1972) 222–236.


	Slow evolution of nearly-degenerate extremal surfaces
	Introduction
	2Perturbation of the degenerate surfaces ruled by the orbits of the light-like Killing vector
	Summary of this section
	General facts about the nearly-degenerate surfaces
	A special case of the inhomogeneous Jacobi equation
	Example: the two-spin solution

	3The general case: V is not a Killing vector field
	Hamiltonian approach to the fast moving strings
	Summary
	Explicit evolution equations
	Interpretation in the dual field theory
	Comment on the special case when itSigma (0) is generated by the orbits of V
	Direct derivation from the Jacobi equation

	Acknowledgments
	References


