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Abstract
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a sphere becomes effectively first order in the time derivative and describes the continuous limit of an
integrable spin chain. In this paper we will try to make this statement more precise. We interpret the
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tension. The long term evolution is a Hamiltonian flow on the moduli space of periodic trajectories.
It should correspond to the renormgroup flow on the field theory side.
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1. Introduction

The AdS/CFT correspondence relates weakly coupling limit of the Type IIB string the-
ory to the strongly coupled limit of th& = 4 Yang—Mills theory. It is hard to imagine that
this type of a correspondence would allow for quantitative checks besides the comparison
of the quantities protected by the supersymmetry. But the recent research revealed several
examples where some nontrivial parts of the Yang—Mills perturbation theory are reproduced
from the string theory computations. The first work in this direction was the computation
of the expectation value of the circular Wilson lojdp2]. It was followed by the discovery
of the BMN limit [3-5] and the “spinning string” solutions which we will discuss in this
paper. In these computations supersymmetry alone is not enough to guarantee the agree-
ment of the results of the string theory and the field theory. It turns out that in some field
theory computations the perturbation series depend on the coupling constagtin the
combinationk/J? whered is a large integer. 172 > A the perturbative computations can
presumably be trusted even whiers large, and whehn is large they can be matched with
the string theory computations. Atthe moment there is no solid explanation of why it works,
and even whether this is true to all orders of the Yang—Mills perturbation theorj6|dee
one of the most recent discussions.) But there are several computations with the impressive
agreement between the field theory and the string theory.

The “spinning string” solutions were first considered in the context of the AAS/CFT
correspondence ii7-9]. Various computations in the classical dynamics of these solutions
lead to the series in the small parameter which on the field theory side is identified with
1/J2. ltwas conjectured that the Yang—Mills perturbation theory in the corresponding sector
is reproduced by the classical dynamics of the spinning strings. The corresponding Yang—
Mills operators are the traces of the products of the large number of the elementary fields
of the Yang—Mills theory] corresponds roughly speaking to the number of the elementary
fields under the trace. The one-loop anomalous dimension of such operators was computed
in [10,11]and the perfect agreement was found with the classical string computations; see
the recent revieyd 2] for the details. It turns out that the single trace operators inhke 4
Yang—Mills theory can be thought of as quantum states of the spin chain, and the one loop
anomalous dimension corresponds to the integrable Hamiltonian.

A direct correspondence between the quasiclassical states of the spin chain and the
classical string solutions was proposed recentlfAB]. It was suggested that in the high
energy limit the string worldsheet theory becomes effectively first order in the time derivative
and agrees with the Hamiltonian evolution in the spin chain. In our paper we will try to
generalize this statement and make it more precise.

The characteristic property of the spinning strings, which was first clearly explained
in [14], is that their worldsheets are nearly-degenerate. In all the known situations when
there is an agreement with the field theory perturbative computation, every point of the
string is moving very fast, approaching the speed of light. Therefore “spinning strings”
are actually fast moving stringsThis observation suggests that there is a correspondence
between a certain class of the Yang—Mills operators and the parameterized null surfaces

1 Fast moving strings were also considered in this contejt5h
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in AdSs x S° [16]. A null surface is a surface with degenerate metric, ruled by the light
rays. A parameterized null surface is a null surfateith a functiono : ¥ — S which is
constant on the light rays. (On the field theory sidean be thought of as parameterizing
“the position of the elementary field operator inside the trace”.) A parameterized null surface
can be specified by the embedding functisfs r) with values inAdSs x S° such that for
a fixedo = o9 the functionsx(og, ) describe a light ray with the affine parameteiand
(d5x, 3:x) = 0. The embedding functions are defined modulo the “gauge transformations”
with the infinitesimal formSx = ¢(0)d.x whereg(o) is an arbitrary periodic function ef.

There is an interesting special case when the null surface is generated by the orbits of
the lightlike Killing vector fieldV in AdSs x S°. The corresponding field theory operators
are characterized by a special property that their engineering dimension is equal to a certain
combination of conserved charges. In this special case the one loop anomalous dimension
should be equal on the string theory side to the value of the conserved charge correspond-
ing to V. We have shown ifi16] that this charge is proportional to the following “action
functional:

Sl = /S do(i3(0: 7). Dox(0. 7) 1)

with the coefficient of the order/ J2. (This formula requires a choice of the closed contour

on the null surface, but the result of the integration does not actually depend on this choice.)
The definition of the special class of operators for which the engineering dimension equals
a combination of charges makes sense for fihjt#2. What is special about the extremal
surfaces corresponding to this particular class of operators for finit&? We describe this

class of extremal surfaces 8ection 2to the first order in./J2.

We will also generalize the expressiol) for the anomalous dimension for the case
when X is a general null-surface, not necessarily ruled by the orbits of the symmetry. (The
solutions of17] belong to this more general class.) Following the idgd 8f we will study
the long term evolution of the approximating nearly-degenerate extremal surfe;e? =
1/J?, 2(0) = X. We show that this long-term evolution is a Hamiltonian flow on the moduli
space of the null-surfaces. The generating function corresponds to the anomalous dimen-
sion of the corresponding Yang—Mills operator. The result is a very natural generalization
of (1):

2 2
STl = /O de fo Ao (9x(, 7), o(0: 7)) @

This is a functional on the space of null-surfaces. For its definition it is essential that
all the light-like geodesics imMdsS,, x $" are periodic. Therefore the null-surfaces are
also periodic, just like solutions of the massless field equations. The integration over
corresponds to taking the average over the periodSsetion 3for details. The value of

Son the contour should correspond on the field theory side to the anomalous dimension of
the corresponding operator.

The structure of the papetn Section 2we will study the perturbations of the null
surfaces corresponding to the special class of operators for which the engineering dimension
is equal to a certain combination of tRecharges. On the AdS side this is reflected in the
null-surfaceX(0) being invariant under the symmetry generated by the null Killing vector
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V. There are restrictions on the nearly-degenerate worldshggfollowing from the fact
that the operators of this class mix only among themselves under the renormgroup. We
show that these restrictions can be satisfied.

In Section 3wve will study the perturbations of the null-surfaces which are not generated
by the orbits of the light-like Killing vector. We will describe the “long-term” or “secular”
behavior of¥(¢). The moduli space of parameterized null-surfaces is a symplectic manifold,
and the long-term evolution is a Hamiltonian flow corresponding to the renormgroup flow
on the field theory side.

2. Perturbation of the degenerate surfaces ruled by the orbits of the light-like
Killing vector

2.1. Summary of this section

LetV be a lightlike Killing vector field inAdSs x S°. Consider the null surfaces which
are ruled by the orbits 0f. These null surfaces correspond to the Yang—Mills operators
of the form trF(X, Y, Z) where F(X, Y, Z) is some (unsymmetrized) product &f Y, Z;
X=P1+idy, Y = P3+id4 and Z = &5 + idg are the complex combinations of the
scalar fields. For these operators the charge correspondwdstaero in the free theory.
Let O be an operator of this type.

What can we say about the extremal surf&gecorresponding to such an operaf®? We
will argue that to the first order ie? = 1/J2 the class of extremal surfaces corresponding
to this special type of operators can be characterized as follows. For each goibp
there is a null-surface’(0) ruled by the orbits o¥% and such that in the vicinity of the
deviation of ¥ from X(0) is of the form:

x(z,0) = x0(t, 0) + €€na(r. o) + -, (3)
wheren; has the property:

[V.[V.mll =0. (4)

Here [V, n1] = Vyn1 — V,, V denotes the commutator of two vector fields; one of these
fields is defined only on the surfacg(0), therefore the commutator is also defined only
on X(0). The property V, [V, n1]] = O is what characterizes this special class of string
worldsheets to the first order 3.

Unlike the null-surfacex(0), the nearly-degenerate surfaEée) is not invariant under
V. But we can describe the variation Bf¢) underV rather explicitly. Indeed, we can see
from (3) that the translation of by V with the infinitesimal parameter is:

&Y' x(z, 0) = x(z, 0) + ue’[V, nil(z, o), (%)
= (xo(r, 0) + ne’[V, m(z, 0)) + €n1(x, 0). (6)

One can see that when the conditidhi¢ satisfiedxo + e[V, 1] determines the infinites-
imally deformed null-surface. Therefore the translation of the nearly-degenerate extremal
surfaceX(¢) by V corresponds to the deformation of the approximating null-surfx(€.
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Let us formulate it more precisely. Notice that a light-like Killing vector fiédn
AdSs x S° can always be representedias= U, + Us whereU 4 andUs are Killing vector
fields onAdSs andS® respectively; U4, Us) = 1 and Us, Us) = —1. Let Q5 denote the
conserved charge correspondingte. Let N be the moduli space of parameterized null-
surfaces ruled by the orbits ®and.M ; be the moduli space of extremal surfaces of the
special type characterized Byg. (4 and such thaDgs = J.

Let us choose some map: N'— M, such that:

1. For any parameterized null-surfagg0) the imageA(X(0)) is an extremal surface
deviating fromX(0) by the terms of the ordef = i /J2.

2. The density ofQs on X(¢) = A(X(0)) in the limite — 0 is proportional to (1¢) do
whereo is the parameterization of the null-surfaE¢0):

Al
Density of Qs = ;/—_—da + O(1) whene — 0. @)
JT €

The action ofV on M ; by translations is conjugate by to some one-parameter group of
transformations ofV. It turns out that this one-parameter group of transformations to the
first order ine2 does not depend on the choiceflt has the following meaning in the dual

field theory. We can identifyv'with the space of continuous operators in the free field theory.
Then the one-parameter group of transformations which we described corresponds to the
renormgroup transformations of the continuous operators when we turn on the interaction
A/J2. This can be summarized in the commutative diagram:

RG acting on nulsurfaces .

2(0) 2(0)

Al Al )

shift by Killing vector field .
2(e) 2(€)

In the rest of this section we will explain how to construct the extremal surfaces satisfying
the conditions §) and @).

2.2. General facts about the nearly-degenerate surfaces

Consider the extremal surface iS5 x S° which is nearly-degenerate (close to being
null). Calculations are simplified with a special choice of the worldsheet coordinates:

ox ox o[ 0x Ox
- = ~Z Z)=0 9
<8t’81)+6 (aa’ao) ’ ©

dx 0

(-x, —x) =0, (10)
at do

wheree is a small parameter measuring the deviation of the worldsheet from a null-surface.

We assume that is periodic with the period2. We choose the small parameteso that

the embedding function(z, o) has a finite limit wher — 0. In this limit x(z, o) describes



A. Mikhailov / Journal of Geometry and Physics 54 (2005) 228-250 233

an embedding of the null-surfagg(z, o). If we chooser as the parameterization of this
limiting null-surface then the density @ g will agree with this parameterization in the
sense oEq. (7). The string worldsheet action is:

A 1
S = £ [ do dt |:—(8Tx, 9:x) — €(0yx, 8gx)j| . (1)
A €
The string equation of motion is:
1
~D;0;x —€Ds0,x = 0. (12)
€

We denoteD, andD,, the worldsheet covariant derivatives. They act on the vector-functions
on the worldsheet with values in the tangent spacédss x S°. The general definition is

Dréﬂ = argﬂ + F\f;arxugp,

wherex* = x*(z, o) are the coordinate functions specifying the embedding of the string
worldsheet into the target space agtd= &"(z, o) is a vector-function on the worldsheet
with values in the tangent spa@§AdSs x S°). Somewhat schematically, one can write
D &* = 3.x"V,&* whereV,, is the covariant derivative in the tangent bundle to the target
space. More preciself, is the natural connection in the 10-dimensional vector bundle over
the worldsheet which is the restriction to the worldsheet of the tangent bundli&sgfx S°.
This natural connection is induced from the Levi—Civita connectioff o4dSs x S°).

One can look for a solution td @) as a power series if:

x(0, T) = xo(0; T) + €2n1(0, T) + €*na(o T) + -, (13)

wherexo(o, 7) is a null-surface. The first deviation satisfies the inhomogeneous Jacobi
equation:

2
o (Gem) S =05 a
and the constraints:
(Do, 8zx0) + (D1, dox0) = 0, (15)
(D1, 8:x0) = —3 (350, do-X0). (16)

whereRis the curvature tensor of the target space (we will remind its definition in a moment).
The constraints1(5) on n follow from the constraints9) onx. The inhomogeneous Jacobi
equatio’ (14) can be derived from the equations of motidr2)(in the following way.

2 The Jacobi equation describes the infinitesimal variation of a geodesic, see for example Appe ik W\
decided to keep this name f&gq. (149 which describes the infinitesimal resolution of the null-surface becoming
an extremal surface. Indeed, the null-surface is composed of the null-geodesics. After the resolution, these null-
geodesics become time-like curves. Itis not true that these time-like curves are geodesics, because there is a “riving
force” D, d,x on the right hand side ofL@). This driving force, resulting from the tension of the string, makes the
equation inhomogeneous.
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Consider the family of worldsheetS(¢) parameterized by = €2. This family of two-
dimensional manifolds “weeps” some three-dimensional manifold (one boundary of this
three-dimensional manifold is the null-surfaE@)). Let us think oo, o, T as coordinates on

this three-dimensional manifold. Consid&y. (12: D, d.x(p, 6, T) — pDs3sx(p, 0, T) = O.
Differentiate it with respect t@:

D,D;3:x — Dydsx — pDyDdsx = 0. a7

Now we have to take into account that the covariant derivatives do not commute. They do not
commute because the target space has a non-zero Riemann tensor. To define the Riemann
tensor, one takes two vector fiel§sn and computes the commutator of the covariant
derivatives along these two vector fields. The result is a section of/Bl{Ss x S°)—

the bundle of linear maps from the tangent space to itself. This section is a bilinear function

of & n calledR(g, n):

R(§ 1) = =VeVy + Vi Ve + Vig).- (18)

For given¢ andy, R(¢, n) is amatrix acting in the tangent space #aiSs x S°. The vector
fieldsd,, 0, andd, are defined only on the three-dimensional submanifold. But still, we can
compute their commutators and the commutators of the corresponding covariant derivatives.
We get, in particular,d,, 3;] = 0 and therefore

[Dy, D] = —R(9,, 7).

Let us use this formula inl(7). Taking into account also th&,d.x = D.d,x we get:
D:D-3,x + R(3:x, 0,x)3:x — Dgdsx — pDpDydgx = O. (29)

In this equation, let us pyt = 0. Sinced, x| ,—0 = n1 we get (4).

Now we will consider the inhomogeneous Jacobi equation in the special case&®en
is ruled by the orbits of the light-like Killing vector field. Our aim is to show that in this
special case there are solutions satisfyiig (

2.3. A special case of the inhomogeneous Jacobi equation
We will start by rewriting (4) in the special case whexXi(0) is ruled by the orbits 0¥,
that isd;xo = V(xo):

D%y D dxg
—— +R(V,p)V = ——. 20
912 + R(V. ) do do (20)

Let us introduce an abbreviation for the covariant derivative; for two vector fielisd
we will denotex - g* = o'V, g*. Taking into accountl(8) we have:

Den=V-n=[V.n]+n-V, (21)
D=V -(V-n)=V-[V.n] +[V.n]-V = RV, n)V, (22)
= [V, [V.nll + 2[V,n].V — R(V, n)V. (23)
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This allows us to rewrite20) as:

D 0xo
[V.[V.nll +2[V, n]~V=a——- (24)
o do
SinceVis a Killing field, its covariant derivative is antisymmetri;, V, = —V, V.. There-
fore for any vector field we canwritex - V = (0 wherew,,, = V,, V, isaclosed two-form.
With this notationEg. (29 becomes:
D 0xg

(V. [V, ]l + 2y 0 = % 90 (25)

The null-surfaces ruled by the orbits of the null Killing correspond to operators of the
form tr F(X, Y, Z). Consider a degenerate surfac€0) generated by the orbits & and

its deformationX(¢) corresponding to turning on the coupling constant. Althou(B)

is invariant undebl, its deformationX(¢) is not invariant. Let us consider the translation
of X(¢) by the vector fieldv with the parameter, schematically &V - X(¢). This corre-
sponds to the action of the renormgroup on the operator in the theory with a finite coupling
constant. The operators of the type (X, ¥, Z) are only mixing among themselves under
the renormgroup at the level of one loop. This implies that the translation Maighe
deformation of the null-surface ruled by the orbitsvo$hould be the deformation of some
other null-surface which is also ruled by the orbitsvofFor the infinitesimal deformation
this means that

[V.[V.ni]] = 0. (26)
Indeedue?[V, 1] is the variation of the deformed worldsheet under the shiftdy eThen
the condition |, [V, n1]] = O implies that:

1. [V, n1] is a solution of thehomogeneoudacobi equation and thereforg+ we?[V, n1]
can be considered as defining the deformed null-suface.
2. This deformed null surface is again ruled by the orbit¥.of

Therefore under the conditio2®) the shift of X(¢) by V can be “compensated” by the
deformation ofX(0), and the deformed’(0) is again ruled by the orbits of. This is
precisely the statement that the diagrahi¢ commutative, to the first order &3.

Can we findn; satisfying @5) and @6)? It turns out that we can. Indeed, with the
condition £6) Eg. (29 becomes:

2w = — =2, @27)

where we denoted

¢=[V.ml

3 That this deformed surface is degenerate follows from the constraBtarid (L6) and fromV being a Killing
vector.



236 A. Mikhailov / Journal of Geometry and Physics 54 (2005) 228-250

We want to study the space of solutiong=af. (2. The 2-formw is degenerate, therefore
we have to make sure that the right hand side@f belongs to the image af. To describe
the kernel ofw we decompos& = Vags, + Vgs. HereVyys. is the component o in the
tangent space tddsSs and Vs is the component in the tangent spacesto The kernel
of w is generated by/ andV = Vaass — Vgs. Notice thatD;9,x0 is orthogonal tov (the
proof of this fact uses that is a Killing vector andV is orthogonal t®,xg). Therefore
it is orthogonal to one of the vectors in the kerneMofit does not follow thatD, d, xg is
orthogonal toV. But remember thal, xg is defined moduley. Adding tod,xp something
proportional toV we can make it orthogonal t8. Indeed, we have

(‘77 Ddanx0) = 80'(‘77 8(T-x0)' (28)
and one can change to Xo where

7 ox)
(V, 85x0) C>V,

A (29)

0oXo = 05X0 — (
whereC is a constant. We adjust so thatxy is periodic. We havel(, 3,%) = C. Now
(\7, D,9,X0) = 0 and therefore, d,xg is orthogonal to the kernel of and thereforev is
invertible on it.

We have to also take care of the constrairits) @nd (L6). Notice thate = [V, n1] is
determined fromZ7) only up to a linear combination &f and V. The coefficient oV is
undetermined and corresponds to shdependent rescaling of the affine parameter on the
light ray. The coefficient o’ is fixed to satisfy {6). After that [V, n1] is completely fixed
moduloV. It remains to satisfyl(5). Let us rewrite {5) in the following form:

(V- 1, 95x0) + (Dona, V) = ([V, m], 9s5x0) + (Doni, V) — @(d5x0, n1) = 0. (30)

We can look forni(zr = 0, o) in the formni|.—o = a(0)V + B(o) where g is a vector
orthogonal to botl/ andV and« is a function ofo such that:

2800[ = _([‘/’ 711]’ ao‘xo) + w(aaxo, 13)

There is a freedom in the choice gf the only constraint is that determined from this
equation should be a periodic function ®f This is the freedom to add tg a constant
vectorAni (constant meand/f Ani] = 0) satisfying O, An1, V) + (V - An1, dsx0) = O.
This corresponds to th&-deformation of the null-surface remaining the null-surface.

The solutions of 25) which have V, [V, n1]] # 0 correspond to operators of the form
O + (1/J2)O whereQ is not annihilated by the symmetry correspondinyto

2.4. Example: the two-spin solution

Here we will consider as an example the two-spin solutiofiL8f. This solution is of
the type considered in this section, the corresponding null-surfa¢éngariant. We will
reproduce the terms of the ord&rin the expansion of the worldsheet near the null-surface.
Let us parameterize the sphefe by the three complex coordinat&s = x; €% with
Z?:l x? = 1. Of the AdS space we will need only a timelike geodesic, which we parame-
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terize byt. The metric is—dr? + 3 |dY;|2. The lightlike Killing vector is
3
) a
=242
ot = 0Py
Consider the following nuII—surfacxég (0, 1):
X; = X1(O'), ¢1([) =1. (31)
The one-forng,,, VVis*V = —dt + 3" x2 d¢;, thereforen = Y dx? A dg;. For any vector

£ we haveizw = (1/2) Y [(& - x%) dp; — (€.¢) dx?]. The one-form on the right hand side
of (27) is:

Dodox =Y (Dodpxr) dx;. (32)
1

Eq. (27, together with the constraint([V, 5]) = —(1/2)(3,x)? can be solved as follows:

1 20 1 _1 d
[‘/7 77] = E(aax) 5 - E ;xl DGBJXI@TW. (33)
This means, that on the initial surfaclj » is a linear function of:
1 29 1 1 d
n=t [E(adx) 5 — E ;)C] Dgag.X[aij| . (34)

Let us compare this to the solution @f8]. The solutions 0f18] correspond to a special
finite-dimensional subspace in the space of null-surfaces, such that the carfgouyk —,
are the periodic trajectories of the C. Neumann integrable system:

Dydpx; = —w?xI + x7 Z w%x%. (35)
On such contours,
n=t|:§ ((aﬂx) +Zw‘lxj)§+§21:w187¢)l modV (36)

The expressior? = Y (d,x7)? + 3 w3x3 is twice the energy of the Neumann system. One
can see thatg + €25 gives the zeroth and the first terms in the expansion of the solution of
Section 2.1 0f18] around the null-surface.

3. The general caseV is not a Killing vector field
In AdSs x S° the null-geodesics are all periodic with the same period, in a sense that all
the light rays emitted from the given point in the future direction will refocus in the future at

4 We denote the one-form corresponding to the ve¥tby the same letter; this should not lead to a confusion.
5 There is a difference in notation%AFRT] =1+ €22, uﬁ[AFRﬂ =1+ 2u?.
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some other point. This implies that the null-surfaceditss x S° are all periodic with the

same integer period. The null-surfaces should correspond to the large charge operators at
zero coupling; the periodicity of the null-surface corresponds to the fact that the operators
in the free theory have zero anomalous dimension.

Turning on a small coupling constant corresponds to considering the extremal sur-
faces which are very close to being null. Such surfaces are the worldsheets of the “ultra-
relativistic” strings. Naively one could think that the extremal surfaces which are close to
the null-surfaces are periodic modulo small corrections. But this is no{1®jelt turns
out that the worldsheet of the ultrarelativistic string is close to the degenerate surface only
locally, in the following sense. For each point on the worldsheet there is a neighborhood
with the coordinate size of the order the AdS radius where the surface is indeed close to
some null-surface. But as we follow the time evolution the deviation of the extremal sur-
face from the null-surface accumulates in time, and eventually becomes of the order of
the radius of the AdS space. This is a manifestation of the general phenomenon which
is known in classical mechanics as the “secular evolution” or the “long-term evolution”
of the perturbed integrable systefd®]. If the string worldsheet was originally close to
a null-surfaceX(0) then after evolving for a period of timaT ~ ¢~ it will be close
to some other nuII-surfacE(O)(szT) which is different fromX'(0). Therefore we get a
one-parameter family of transformations on the moduli space of the null-surfaces with the
parameten\ T, or ratherc2AT. We call these transformations the “long term evolution” of
the null-surfaces. In fact the fast moving string determines a null-surface and its parameteri-
zation, therefore we have a family of transformations on the moduli space of parameterized
null-surfaces.

Before we proceed with the analysis of the string, we outline a general situation when
this slow evolution is usually found. Suppose that we have an integrable system on the
phase spachl with the HamiltonianHy, andHo + €2A H is a perturbed Hamiltonian. We
are interested in the special case when the phase $ppdwes a submanifold/y ¢ M
closed under the flow affy, such thatHy|,,, is constant and all the trajectories B on
M7 are periodic with the same peridd Also, we require that the perturbation is such that
the trajectories ofy + €A H which started neaM will stay nearMr at least on the
time intervalsAt ~ ¢~2. In other words, the trajectory of the perturbed Hamiltonian which
started onM7 should be always close to some “approximating” periodic trajectory of the
unperturbed system. (This does not follow from anywhere; it is an additional assumption
which has to be verified.) The “approximating” periodic trajectory will slowly drift. Let
us calculate the velocity of the drift. Suppose that we started at the ppitM7 on the
periodic trajectory offlp with the periodT. Let us denoteg(z) the periodic trajectory of
Hy starting atxg. The perturbation drives us away from this periodic trajectory. Take
an integern <« 2. After the time intervahT we are close to the original poing. The
deviation fromxg is:

Sx =€ / " de(e?T—9H0y, =1 d(A H)(x0(7)) + 0(€?). (37)
0
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Here (&7 -Ho), denotes the translation of the vector in the tangent spadesiche point
xo(t) forward to the poinkg(nT) = xg by the flow of Hp. Let us computes, w:

a0 = & [ | " ooy dAH(xo(f))] +o@). (38)
0

Because of our assumption the componensxofvhich is transverse td/; does not ac-
cumulate in time. This means that for sufficiently largere have (¥n)dx approximately
tangent tdl',, M (the component transverse®g, M is of the ordek?/n.) The one-form
on the right hand side oBg) simplifies if we restrict it to the tangent spaceMy . If we
take& e Ty, M7 and computes(sx, £), we will get the difference of? " AH = ne?AH
on the periodic trajectory going througi + & and the periodic trajectory going through
xo. In this sense,

tgxa)|TXOMT = néz dm (39)

We have the following picture. Consider the restrictiomain M. Becauséy| ), = const
the tangent vector to the periodic trajectory is in the kernel|@f,. This means thab|
defines a closed two-form on the space of periodic trajectories with the pEriefich
we will denote®. The “averaged” HamiltoniaaH is a function on this space of periodic
trajectories. The secular evolution is the vector figlth the space of periodic trajectories
which satisfies

1g® = dAH. (40)
In the rest of this section we will apply this general scheme to the ultrarelativistic string in
AdSs x S°.

3.1. Hamiltonian approach to the fast moving strings

Consider the fast moving string #dSs x S°. As explained in Section 2.2 {f6] we can
parameterize the worldsheet by the coordinatasdr such that the embedding functions
satisfy the constraints:

(9¢x, 9:x) + €2(35x, px) = O, (41)
(0:x, 35x) = 0. (42)

These conditions do not completely tixandt. They are preserved by the infinitesimal
reparameterizations of the following form:

S ix = Lo +€0) + falo = )l + e fulo+€0) = fulo — el (49

We will assume that is a series in even powers@fx = xg + €211 + €*n2 + - - -; this form
of x is preserved by the transformatiodS) with

fo=fotefiteElfat- -,

frR=fo—efi+efo—--.
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Using this residual freedom in the choice of the coordinates we can impose the following
condition on the projection of the string worldsheet$h

(0rxg5, 05xg5) = C + 0(62), (44)
(x5, 0rxg5) + €2(doX g5, Ipxgs) = —1 + Ce® + O(e?), (45)

whereC and C are both constants (do not depend ®n Rescalinge and r by _—
(1 — Ce?)e? andt — (1 — Ce?)~Y27 we can put

C=0. (46)

The initial conditions 44) and @5) are preserved by the equation of motidRo x —
€2D,d,x = 0. This particular choice of the coordinates simplifies the calculations.

In the limit e = 0 the worldsheet of the string becomes a collection of non-interacting
massless particles. This limiting system can be described by the action

1 2n ox 0x
—-[d do (22,2 47
So 2/ ﬁL 0(& &) (“47)

which is the first term of 11). (In this section we will omit the overall coefficient
(v/2/47)(1/€) in front of the action.) Introduction af > 0 corresponds to the perturbation

of this system by the interaction between particles, which is described by the second term
on the right hand side ofLl(). The interaction term is

2%

AS:EJ/G(/ w(ﬁwﬁ). (48)

2 0 do oo
Let us reformulate this problem in the Hamiltonian approach. We will begin with the study
of the unperturbed system?). Consider first thes” part. The unperturbed system can be
thought of as a continuous family of free non-interacting particles moving on a sphere. For
every fixedo = oy, x(t, 0g) describes the motion of a free particle which is independent of
particles corresponding to other£ op. The momentum conjugate toe S” is p = dx/dt,
and the Hamiltonian igfg = (1/2)(p, p). This system is integrable. For everyhe corre-
sponding point of the string moves on its own geodesijdifferent geodesics for different
values ofo, and the velocity generally speaking may also depengl dime geodesics if”
are periodic. We can parameterize every geodesic by an gnglfo, 2x]. For eachs the
“angle” variabley (o) satisfiesd. (o, 7) = f(o) wheref (o) is thes-dependent frequency.
We want to study the effect of the small perturbatid8)( Let us first introduce some useful
notations.
Particle on a sphereWe will consider two symplectic manifolds. The first is the phase

space of a free particle moving on a sphere with the Lagrangiar);(we will denote it
M. This is the cotangent bundle of the sphafe= T*S". The second symplectic manifold
is the moduli space of the geodesicssSity we will call it G. The natural symplectic form
on G can be constructed in the following way. Let us parameterize each geodesic by an
angley; we have §,.x, d,x) = 1. The tangent space to the moduli space of geodesics at
a given geodesic is given by the Jacobi vector fiéldghich satisfy the Jacobi equation
Dig — R(9yx, £)3yx = 0. Given two Jacobi vector fields andé, we define the symplectic
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form:

Q(&1, £2) = —(&1, Dy&2) + (Dyé1, &2). (49)

The right hand side is evaluated at a particular point on the geodesic (at some particular
¥). But it does not depend on the choice of this point (because of the Jacobi equation). It
is closed because it is actually a differential of the one-fadpx(£); this one-form does
depend on the choice of a point on a geodesic, but its differential does not. Also, a “trivial”
Jacobi fields, = dyx corresponding to the shift along the geodesic is in the kern@. of
Indeed,

Q(é, 8¢x) = (Dw%‘, 31/,)6) =0

becausedyx, dyx) = 1 for both the original geodesic and its infinitesimal deformation by

the Jacobi field. ThereforeR is a well defined two-form on the moduli space of geodesics.
Consider the subspadé, c M of the phase space where the velocity of the particle

is nonzero. It is a fiber bundle over the moduli space of geod€sitisdeed, the position

and the velocity of the particle uniquely determines the geodesic on which the particle is

moving. This defines a projection map:

.My —>G (50)

from the phase space of the particle to the moduli space of geodesics. We will try to use
boldface letters to denote objects @rto distinguish them from the functions and forms
onM. We decided to use a boldface to denote the projection map because it takes values in
G, sox(p, x) determines a point is. The fiber ofr is ST x R, whereR, is a real line
without zero. Thes! parameterizes the positiahon the geodesic arid,, determines the
velocity / = v'E where we denoted = (p, p). Let us introduce the 1-for¢ on M.

_ (p,dv)

be= (p.p)’

(51)

It is characterized by the properties: (1) the restrictiorDgf on the fibers! x Ry is
E~Y2dy wherey is the angle ons® and (2) it is zero on any vector ifiM, having
a projection on's” orthogonal top. For a vectow € TG we will define a liftz v as a
vector inTM, with z,(r~1v) = v and d£(r~1v) = 0 andD¢(z~1v) = 0. This determines
the connection on the fiber bundi¢, — G.

The symplectic form oM, can be written in terms db¢ and the pull-back of the
symplectic form orG:

w = 3dE A D¢ + VET* Q. (52)

Particle onAdsS,, x S". Itis straightforward to write the analogue &8 for the patrticle
moving onAdsS,, and onAdS,, x S".We considedds,, x S" with the metric of the mostly
negative signature (that is, the metric$his considered negative definite). For two vectors
&, n in the tangent space tds,, x S" we denote{, n) 4 the scalar product of theitds,,
components, and(n)s the scalar product of thei§” components. In general, the index
A will denote objects omds,, and the inde)S objects on the sphere. Let us introduce the
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notations:
Es = (p. p)a, Es = (p. p)s, (53)
Doa = E M (p, d)a, Des = Eg*(p., d)s (54)

(Notice thatE 4 is positive andEs is negative.) We have

R, = (dpAdx)a  (p,dp)a A (p, dx)a

EY? EY? ’
T — (dp Adx)s  (p,dp)s A (p, dx)s
P (CEs)? (—Es)?P2
Therefore
w=3dEs ADpa + 3 dEs A Dos + VEAT* Ry + /—Est* Q. (55)

Here n*Q% andn*Q5 are lifted from the moduli space of geodesics 4iS,, and ",

respectivelyDgs = (p, dx)s/(p. p)s-

String onAdsS,, x S". Let us proceed with our original system, which is a continuous
family of free particles. The phase space of the system is the “loop sgadeivhich
consists of the contourg (o), x(o)) satisfying the constrainty(d,x) = 0 and @, p) +
€%(3,x, 9,x) = 0. The symplectic form is an integral over

o= / do E 0E () 7 Doa(0) + 5 4Es(o) A D (o)

+ VEA(o)n* 4 (0) + v/ —Es(U)n*Szz(U)] . (56)

We want to derive an evolution equation bi6;. We use the boldface for the objects living
onGor LG, therefore our goal is to arrive at the equation where all the letters are bold. The
differential of the perturbation Hamiltonian is

dAH = /do(aax, D, dx) = — / do(Dy0yx, dx).

Let us decomposexdas the sum of the component parallejpte- 9;x and the component
orthogonal tg. We get:

dAH = /dG[—(P(U), D505x)aADpa(0) — (p(0), Dodsx)sDps(0)
— (dx(0), (Do 95x) 1)]- (57)

Here (l)aaax)J_ = Dy05x — [(P, Daaax)A/(p, P)A]PA - [(pv DJaUx)S/(pv P)S]pS- The
one-form (., (D59,x) 1) is an element of the cotangent spage ) M to the phase space
at the point p, x). It is horizontal in the sense that its value @9E 4, 9/9Es, 9/9¢4 and
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d/d¢s is zero. This means that it is a pullback of some farfp, x) on the tangent space to
G at the pointz(p, x):

(dx, (Daaox)l_) = n*a(ps x)' (58)

To avoid confusion, we want to stress that this fat(p, x) € T;rk(p,x)G depends ong, x)
and not just on the projectior(p, x). That is why we did not use the boldface tarGiven
Eqg. (58 for dH and the symplectic fornbg) on L M we can write down the Hamiltonian
vector field:

0 Yd(H + €2AH)
9 2 9 9 -1o-1
= —+ — +€|(p, DodoX) a7 + (P, Dodox)s——— — R "a(p, %) | .
S 0E 4 0Eg

(59)

Long term evolutionThe coefficients 08/9E 4 andd/dE s describe the evolution of the
frequency:

Ea(z) = EA(0)+ €2 /0 e (p(0: ). Dydox(c: T,

Es(t) = Es(0)+ €2 /0 e (p(0: 7). Dotor(e: 7).

We want to study the evolution over the period up to the o¢@érerefore we can replace on
the right hand side(o; t’) and p(o, t’) with the unperturbed motiary(o, ') and po(o, 7').

We can now see thdt, () andE g(t) oscillates around 4 (0) andE 3(0). Indeed, taking
into account the initial conditiordd) we have:

[ 6 @exto. ). Dataton O0a = = [ dv oL (00x(0: ) dox(a ¥4 =0 (60)
because of the periodicity. Therefore the variations of the frequency do not accu-
mulate over time. The initial conditionst%) imply that E4(0) = 1 — €2(dyx, 95x)a +
(terms of the higher order i?).

But the variation of the shape of the contour does accumulater Bbthe order Je2
the change in the shape of the contour will be of the order 1. Inde®driplies that the
projection of the trajectory o6 satisfies:

dcm(p, x) = —€*Qa(p, x) (61)

The variation of the geodesic over one period is therefore:

i
St=-Q71 A dy a(po, xo(¥)). (62)

Again, we neglected the higher order terms#rand replaced all thep(z), x(z)) on the
right hand side of§1) by the unperturbego(z), xo(z). Also, following the notations in
(49 we replaced the time with the angley parameterizing the geodesic. Notice that
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02” dyr a(po, xo(v)) is the differential of the function on the ba€ewhich is obtained by
the integration ofA H over:

2 _
/ dy o = dAH, 63)
0
2 2n
AH = %/0 dl”/o do(95x0(¥: 0). dgxo(V: 0)). (64)

Let us prove it. We have

/ dyor = / Ay do(Dy dr (. 0). dox (s o)) (65)

By definition dv; = dx — (dx, dyx)adyxa + (dx, dyx)sdyxs. (Remember that in our no-
tations the metric o8° is negative definite.) Therefore:

/dl//a = fdl/f do(Dy dx, 9,x) — / dyr do (Do ((9yx, dx) 40y x), d5X) A

— / d’# dO‘(Dg((av,x, dx)sal/,x), 35)6)5.

But the second and the third terms on the right hand side are zero on the initial conditions
(44). Therefore[ dyy « = dAH as we wanted.
Now we can compute the variation of p, x) over the period:

s = —e’Q LdAH(n). (66)
Introducingt = €27 we obtain the equation for the secular evolution:

9 _

8—’: — @ 1dAH(®x). (67)

In this equation all the letters (except fdandd) are boldface, as we wanted. It describes
the evolution of the contour in the moduli space of null-geodesicads), x S".

3.2. Summary

The effective Hamiltonian is a functional on the space of parameterized null-surfaces:

- 1 2 2
AH = —f dlﬁ/ do (35, 05x). (68)
2 Jo 0
Here v is the affine parameter on the light rays and that the periodicity of the light rays
is Ay = 2z. The remaining coordinate freedom is in the choice of the closed contour
Y = const, but the integral§8) does not depend on this choice. Therefore it is a functional
on the space of parameterized null surfaces.
The symplectic form on the space of parameterized null-surfaces is

Q= / do(dx A Dy dx). (69)
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This symplectic form has a straightforward geometrical interpretation. Notice that the space
of classical string worldsheets has a natural symplectic form which is defined in the following
way. The deformations of the string worldsheet are described by the vector&felds.

The value of the symplectic form on two infinitesimal deformatiénandés is

Qstring(€1, §2) = \g fl ((§1, *Dé&2) — (&2, *D&1)). (70)

Here D is the covariant differential on the worldsheet, the metric on the worldsheet is
induced from the space—time, the integral is taken over a closed spacial contour and the
fields&1 andé; are chosen to preserve the conformal structure on the worldsheet (they are
originally defined only up to the vector tangent to the worldsheet). The symplectic form
(69) on the space of null-surfaces is the ultrarelativistic limit of the symplectic fai@h (

on the phase space of the classical string. Indeed, wher0 (70) becomes

Qsting = % / (dx A Dy ). (71)

As we will explain inSection 3.4this equation justifies our definition of the small parameter
€ and the parameterization Indeed, the right hand side agrees on the field theory side with
the symplectic structure of the continuous limit of the spin chain. The paramstesuld
be identified with the number of the site divided by the length of the chain.

In the end of this section we will derive this evolution equatiém) directly from the
inhomogeneous Jacobi equation. But first we want to rewsitgit a more explicit form
and discuss its interpretation in the dual gauge theory.

3.3. Explicit evolution equations

Here we will realize the moduli space of geodesics as a quadric in the complex projective
space and write the evolutideqg. (67 in the explicit form. Let us start with th§" part.
Geodesics 0" are equators:

xo(t, 0) = e1(o) cost + e2(o) sint. (72)

They are parameterized by a pair of orthogonal vectgrande; modulo the orthogonal
transformations mixing; ande,. As a manifold it is the Grassmanian of two-dimensional
planes in then 4+ 1-dimensional space; = Gr(2, n + 1). Let us introduce a complex
vectorZ = ey +iez in C"*1. It has the propertiesZ( Z) = 0 and ¢, Z) = 2. Given the
equatorZis determined up to a phage— €*Z. Therefore the moduli space of geodesics
is a quadric in the complex projective spaEB” given in the homogeneous coordinates

[Z1:---: Zy41] by the equationZ, Z) = 0. Similarly, the moduli space of geodesics on
AdS,, is a quadric inCP™ given in the homogeneous coordinat&sf{, Yo, ..., Y,,_1] by
the equationX, ¥) = Y2, + Y2 — Y2 — ... — Y2  =0.

In our application we need actually not just the geodesic, but also the position of the
point on it. Therefore we have to keep the phaseg afdY. The position of the point of
the string inAdsS,, x S" is given by

(xa, xs) = (ReY, ReZ)
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and the velocity is

(pa. ps) = (VEaImY,/=EsIm Z).

The averaged perturbation Hamiltonian is
1 _ _
AH = Z/do[(agY, 9,Y) — (05 Z, 0, Z)] (73)

with the constraint
(Y, 8,Y) — (Z,8,Z) = 0. (74)

The symplectic form
Q2= % [ do((dY A dY) — (dZ A dZ)). (75)

The Hamiltonian flow $9) averaged over the periad:
9:Y =i[(1 — 3€2(3:Y, 3, Y)Y — 2€202Y — 1e2(3,Y, 8, Y)Y,
0:Z =i[(1 — 2628, Z, 0, 2))Z — 3?92 Z — 1eX(8, 2, 8,2)Z]. (76)

The terms proportional t¥ andZ are fixed from the initial conditior4), and the terms
proportional toY andZ are such thatd¢ Y, Y) = 0 and ¢.Z, Z) = 0.

3.4. Interpretation in the dual field theory

To interpret these equations on the field theory side we have to consider the single trace
operators with large R-charge. In the “continuum lin¥ttorresponds to the local density
of the R charge. The operators corresponding to the speeding strings are “locally half-BPS”
[14]. Therefore the density of the R charge should be a decomposable element of so(6)
which means that4, Z) = 0. Following the idea 0f13] we can interpreZ as parame-
terizing a point on the coadjoint orbit of so(6) consisting of the decomposable elements.
Decomposable elements are those antisymmetric matrices which can be represented as an
antisymmetric product of two orthogonal vectassa ez; then Z = e1 + iep. This orbit
corresponds in the sense[@0] to the vector representation of so(6) which lives on the sites
of the spin chain.

Let us now add the AdS part. Consider the orbit of sdfZonsisting of the elements
of the formY A Y whereY = ¢; + iex with (¥, Y) =0 and ¢, Y) = 2. Just as a geodesic
in S° is defined byZ modulo a phase, a geodesicAdSs is defined byy modulo a phase.
Roughly speaking, a pair of functiong (o), Y (o)) where bothZ (o) andY (o) are defined
modulo local phase rotations (independentZandY) define a null-surface iddSs x S°.
But there is a subtlety. For the corresponding surface to be null we have to be able to fix the
relative phase oY andZ in such a way that

(Z,0,2) = (Y, 3, ). (77)

This imposes the following integrality condition on the functidh®) and Z(o). Let us
consider a two-dimensional surfabe, in CP® such that its boundary is the conto(f)]
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and a two-dimensional surfad2y in CP?** such that its boundary is the contout(§)].

The integrality condition is that the symplectic aredxf should be equal to the symplectic
area of Dz plus an integer. On the field theory side this integrality condition corresponds
to the cyclic invariance of the trace.

To summarize, let us consider two functior§ [ ST — CP?** and [Z] : s — CP®
satisfying ¢, Y) = (Z, Z) = 0 and the integrality condition described above. The integral-
ity condition guarantees that we can liftJand [V] to the functions : T — C2t%andz :

s — C®satisfying 77). Let us fix such a lift modulo an overall phage Z) ~ €%©)(y, z).
This data determines the null surface4Ss x S° corresponding to the Yang—Mills oper-
ator with the anomalous dimension

eﬂ / do((3,Z, 85Z) — (3, Y, 3, Y)). (78)
8

In this formula we have restored the coefficiefit /4re from Eq. (19). The integral does
not depend on the “overall” phase df ¢).

The precise relation betweeand) can be obtained by computing the conserved charges.
Consider a Killing vector field) on S°. We have

Sux' = ulx/, (79)

wherex!, i = 1, ..., 6 denote a unit vector representing the poins®fandu* is an an-
tisymmetric matrix corresponding to the symmettyLet us compute the corresponding
conserved charge to the first orderinVe have:

_1\/X 2

<or ), do u'/ x})(z, 0)d-xb(T, 0). (80)

Qu

By definitionxo(z, o) should belong to the geodesic specifiedfy), andd. x’ = ((i/2)Z A
Z)YxJ. This means that the charge is:

1V (% i =
ov =2 [T g (u,lez). (81)
€21 Jo 2
But (i/2)Z A Z should be the local density of the R charge. Therefore we identify
N
_ 82
T 2n(L)2n)’ (82)

wherel is the length of the spin chain (the number of operators under the trace.) Substitution
of e in (78) gives:

1 A 2

A= 6212 )y do((05Z, 35 Z) — (05Y, 0Y)). (83)

This is a functional on the space of contould), Z(c)) in C12, subject to the con-
straints |Y|? = |Z.|2 =2 and ¢,0d,Z) = (Y, d,Y) and defined up to an overall phase
(Y(0), Z(0)) — €)Y (o), Z(0)). The symplectic structure on this space is givervi) (



248 A. Mikhailov / Journal of Geometry and Physics 54 (2005) 228-250
3.5. Comment on the special case wig(0) is generated by the orbits of V

In the special case wheXi(0) is generated by the orbits ¥fthe anomalous dimension
can be computed in two different ways. One way is to compute the conserved charge
corresponding t¥ as was done ifY]. The other way suggested]itB3] is to study the secular
evolution of ¥(¢) and find the Hamiltonian governing this evolution. The two methods give
the same result for the following reason. The constraipt)g + €2(9,x)*> = 0 says that
the total perturbed HamiltoniaHp + €2AH should be zero. The “effective” Hamiltonian
governing the secular drift is obtained by the averaging &f over the period. Because of
the constraint we haw A H = — Hp. But in the vicinity of £(0) we haveHy equal to the
chargeQy up to the terms of the higher order in the deviation frar¢0). (This follows
from the fact that the Hamiltonian flow @fp on X(0) is the translation by.)

3.6. Direct derivation from the Jacobi equation

We derived 67) and (/6) using the Hamiltonian formalism. Here we will give a direct
derivation from the inhomogeneous Jacobi equation.

Let us study the inhomogeneous Jacobi equation in the special case of AdS times a
sphere:

D%n — R(3:x, n)d;x = Dy0gx. (84)

We can decomposgx as a sum of the vectdrx 45, in the tangent space t0dSs and
the vectord,xgs in the tangent space t6°, 9.x = drXAdss + 0-xgs. We denoted-x =
drxadss — d-xg5. We will need the following representation fd¥; 9, x:

Dydgx = D:£ + afo, T)0:x + B(o, 7)., (85)

wheret is a Jacobifield orthogonal to bodbhx andd,x andux(t) andB(z) are some functions.
Indeed, let us consider the projection of the geodesiofihe geodesic o6° is an equator:

x(t, 0) = e1(0) cost + e2(o) sinT, (86)
where ¢1(0), e1(0)) = (e2(0), e2(0)) = 1 and é1(0), e2(o)) = 0. We have
Dydsx = (€7(0) cost + €5(o) sint)y, (87)

where the index means that we have to project to the tangent spaée afong the radial
direction. It is enough to consider this equatiorsat 0. Let us decompose the second
derivative ofe;, i = 1, 2 in the components; tang anda; norm parallel to the planeeg, e)
and the components/()vert perpendicular to this plane:

¢i = a1ez + agner + (€f)ver. (88)

ey = aze1 + azpe2 + (€)vert (89)
The second covariant derivative is:

Dyd,x(1, 0) = (a1;COS T — ap,; SIN? T + (a2, — a1.,) COST SINT)

x d7(e1 COST + €2 SINT) + (€] )vert COST + (€5)vertSINT. (90)
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The analogous expression holds for théSs-component ofD,d,x. But (¢ )vertCOST +
(e5)vertsinT = d:((e])vertsint — (€3)vertcOST) and

% = (ea{)vertsinf — (eg)vert COST

is a Jacobi field. This prove8%). Notice thatt and D¢ are orthogonal to both.x and
d-x. We can now present a solution to the equat®4):(
= 36 + Ad;x + Bix, (91)

whereA andB satisfyd?A /912 = « andd?B/dt? = B. Itis important that bottA andB can
be chosen periodic functions ef This is true forB:

/ dr g = / dr(0;x, Dydyx) = —% / d7d; (95x, dgx) = O (92)
and also forA, because
/ dra = / dt(d:x, Dydyx) (93)
1
=5 [ A0, Bn)aass — (@ 30)e] = O (94

since the projections of to AdSs and S° are both periodic. Therefore we see thatan

be chosen as a sum of the linearly growing term and the oscillating terms. The linearly
growing term is (¥2):£ wheret is a Jacobi field satisfyin@®.& = D,d,x. This linear term

is responsible for the secular evolution.
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